next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Dmodules :: DrestrictionComplex

DrestrictionComplex -- derived restriction complex of a D-module

Synopsis

Description

An extension of Drestriction that computes the derived restriction complex.
i1 : R = QQ[x_1,x_2,D_1,D_2,WeylAlgebra=>{x_1=>D_1,x_2=>D_2}]

o1 = R

o1 : PolynomialRing, 2 differential variables
i2 : I = ideal(x_1, D_2-1) 

o2 = ideal (x , D  - 1)
             1   2

o2 : Ideal of R
i3 : DrestrictionComplex(I,{1,0})

                              1                 1
o3 = 0  <-- 0 <-- (QQ[x , D ])  <-- (QQ[x , D ])
                       2   2             2   2
     -1     0                        
                  1                 2

o3 : ChainComplex

Caveat

The module M should be specializable to the subspace. This is true for holonomic modules.The weight vector w should be a list of n numbers if M is a module over the nth Weyl algebra.

See also

Ways to use DrestrictionComplex :

For the programmer

The object DrestrictionComplex is a method function with options.