i1 : R = ZZ/101[a,b,c,d] o1 = R o1 : PolynomialRing |
i2 : TorR = torAlgebra(R) o2 = TorR o2 : PolynomialRing, 4 skew commutative variables |
i3 : S = R/ideal{a^3,b^3,c^3,d^5} o3 = S o3 : QuotientRing |
i4 : TorS = torAlgebra(S) o4 = TorS o4 : PolynomialRing, 4 skew commutative variables |
The above example calculates the Tor algebra of R and S up to degree 3, by default. One can also specify the maximum degree to compute generators of the Tor algebra by specifying the GenDegreeLimit option.
i5 : R = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3,d^3,a^2*b^2*c^3*d^2} o5 = R o5 : QuotientRing |
i6 : TorR = torAlgebra(R,GenDegreeLimit=>5) o6 = TorR o6 : PolynomialRing, 4 skew commutative variables |
The object torAlgebra is a method function with options.