next | previous | forward | backward | up | top | index | toc | Macaulay2 website
DGAlgebras :: HH_ZZ DGAlgebra

HH_ZZ DGAlgebra -- Computes the homology of a DG algebra as a module

Synopsis

Description

i1 : R = ZZ/32003[x,y,z]

o1 = R

o1 : PolynomialRing
i2 : A = koszulComplexDGA(R)

o2 = {Ring => R                      }
      Underlying algebra => R[T ..T ]
                               1   3
      Differential => {x, y, z}

o2 : DGAlgebra
i3 : apply(numgens R+1, i -> numgens prune homology(i,A))

o3 = {1, 0, 0, 0}

o3 : List