next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Binomials :: cellularBinomialRadical

cellularBinomialRadical -- Radical of a cellular binomial ideal

Synopsis

Description

The radical of a cellular binomial ideal can be determined very quickly. If the cellular variables are known they can be given as a list via the option CellVariables.
i1 : R = QQ[x,y,z]

o1 = R

o1 : PolynomialRing
i2 : I = ideal(y^3,y^2*z^2-x^3,x*y^2*z,x^3*z-x*y)

             3   2 2    3     2    3
o2 = ideal (y , y z  - x , x*y z, x z - x*y)

o2 : Ideal of R
i3 : cv = isCellular (I,ReturnCellVars=>true)

o3 = {z}

o3 : List
i4 : cellularBinomialRadical (I,CellVariables=>cv)

             3   2 2    3     2    3
o4 = ideal (y , y z  - x , x*y z, x z - x*y, x, y)

o4 : Ideal of R

See also

Ways to use cellularBinomialRadical :

For the programmer

The object cellularBinomialRadical is a method function with options.