next | previous | forward | backward | up | top | index | toc | Macaulay2 website
AdjointIdeal :: traceMatrix

traceMatrix -- Compute trace matrix.

Synopsis

Description

Computes the trace matrix for the integral basis ib, i.e., the matrix containing the traces of the elements ib_(0,i)*ib_(0,j).

We assume that I has the following properties:

Denote the variables of R=ring(I) by v,u,z. All singularities of C have to lie in the chart z!=0 and the curve should not contain (1:0:0).

We assume that ib has the following properties: The entries are in K(u)[v] inside frac(R) where the i-th entry is of degree $i$ in v for i=0..n-1. Note that this always can be achieved.

A rational curve with three double points:

i1 : K=QQ

o1 = QQ

o1 : Ring
i2 : R=K[v,u,z]

o2 = R

o2 : PolynomialRing
i3 : I=ideal(v^4-2*u^3*z+3*u^2*z^2-2*v^2*z^2)

            4     3      2 2     2 2
o3 = ideal(v  - 2u z - 2v z  + 3u z )

o3 : Ideal of R
i4 : Rvu=K[v,u];
i5 : QR=frac(Rvu);
i6 : ib=matrix {{1, v, (-1+v^2)/(-1+u), 1/(-1+u)/u*v^3+(-2+u)/(-1+u)/u*v}};

              1        4
o6 : Matrix QR  <--- QR
i7 : traceMatrix(I,ib)

o7 = | 4 0    0    0    |
     | 0 4    0    8u-4 |
     | 0 0    8u+4 0    |
     | 0 8u-4 0    16   |

                        4                  4
o7 : Matrix (frac QQ[u])  <--- (frac QQ[u])

The Cusp:

i8 : K=QQ;
i9 : R=K[v,u,z];
i10 : I=ideal(v^3-u^2*z)

             3    2
o10 = ideal(v  - u z)

o10 : Ideal of R
i11 : Rvu=K[v,u];
i12 : QR=frac(Rvu);
i13 : ib=matrix({{1,v,v^2/u}});

               1        3
o13 : Matrix QR  <--- QR
i14 : traceMatrix(I,ib)

o14 = | 3 0  0  |
      | 0 0  3u |
      | 0 3u 0  |

                         3                  3
o14 : Matrix (frac QQ[u])  <--- (frac QQ[u])

A curve of genus 4:

i15 : K=QQ;
i16 : R=K[v,u,z];
i17 : I=ideal(v^6+(7/5)*v^2*u^4+(6/5)*u^6+(21/5)*v^2*u^3*z+(12/5)*u^5*z+(21/5)*v^2*u^2*z^2+(6/5)*u^4*z^2+(7/5)*v^2*u*z^3);

o17 : Ideal of R
i18 : Rvu=K[v,u];
i19 : QR=frac(Rvu);
i20 : ib=matrix({{1,v,v^2,v^3/(u+1),1/u/(u+1)*v^4,1/u^2/(u+1)*v^5-7/5*(u-1)/u*v}});

               1        6
o20 : Matrix QR  <--- QR
i21 : traceMatrix(I,ib)

o21 = | 6                0                  0                      
      | 0                0                  0                      
      | 0                0                  (-28u4-84u3-84u2-28u)/5
      | 0                (-28u3-56u2-28u)/5 0                      
      | (-28u2-56u-28)/5 0                  (-36u4-36u3)/5         
      | 0                (-36u3-36u2)/5     0                      
      -----------------------------------------------------------------------
      0                            (-28u2-56u-28)/5                
      (-28u3-56u2-28u)/5           0                               
      0                            (-36u4-36u3)/5                  
      -36u4/5                      0                               
      0                            (196u4+784u3+1176u2+784u+196)/25
      (196u4+980u3+1372u2+588u)/25 0                               
      -----------------------------------------------------------------------
      0                            |
      (-36u3-36u2)/5               |
      0                            |
      (196u4+980u3+1372u2+588u)/25 |
      0                            |
      (420u4+1764u3+1260u2-84u)/25 |

                         6                  6
o21 : Matrix (frac QQ[u])  <--- (frac QQ[u])

See also

Ways to use traceMatrix :

For the programmer

The object traceMatrix is a method function.