Following Jesse Burke's paper "Higher Homotopies and Golod Rings", given a polynomial ring S and a factor ring R = S/I and an R-module X, we compute (finite) A-infinity algebra structure mR on an S-free resolution of R and the A-infinity mR-module structure on an S-free resolution of X, and use them to give a finite computation of the maps in an R-free resolution of X that we call the Burke resolution. Here is an example with the simplest Golod non-hypersurface in 3 variables
i1 : S = ZZ/101[a,b,c] o1 = S o1 : PolynomialRing |
i2 : R = S/(ideal(a)*ideal(a,b,c)) o2 = R o2 : QuotientRing |
i3 : mR = aInfinity R; |
i4 : res coker presentation R 1 3 3 1 o4 = S <-- S <-- S <-- S <-- 0 0 1 2 3 4 o4 : ChainComplex |
i5 : mR#{2,2} o5 = {3} | 0 -a 0 a 0 0 0 -c 0 | {3} | 0 0 -a 0 0 0 a b 0 | {3} | 0 0 0 0 0 -a 0 0 0 | 3 9 o5 : Matrix S <--- S |
Given a module X over R, Jesse Burke constructed a possibly non-minimal R-free resolution of any length from the finite data mR and mX:
i6 : X = coker vars R o6 = cokernel | a b c | 1 o6 : R-module, quotient of R |
i7 : A = betti burkeResolution(X,8) 0 1 2 3 4 5 6 7 8 o7 = total: 1 3 6 13 28 60 129 277 595 0: 1 3 6 13 28 60 129 277 595 o7 : BettiTally |
i8 : B = betti res(X, LengthLimit => 8) 0 1 2 3 4 5 6 7 8 o8 = total: 1 3 6 13 28 60 129 277 595 0: 1 3 6 13 28 60 129 277 595 o8 : BettiTally |
i9 : A == B o9 = true |
This documentation describes version 0.1 of AInfinity.
The source code from which this documentation is derived is in the file AInfinity.m2.