# randomDeformation -- a random deformation of a given toric vector bundle

## Synopsis

• Usage:
E1 = randomDeformation(E,h)
E1 = randomDeformation(E,l,h)
• Inputs:
• Outputs:

## Description

"For a bundle of rank $k$ the function "randomDeformation" replaces each base matrix by a random $k$ by $k$ matrix with entries between $l$ and $h$. For this $h$ must be greater than $l$. If $l$ is not given then the random entries are between $0$ and $h$ and then $h$ must be strictly positive."

 i1 : E = tangentBundle pp1ProductFan 2 o1 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 2 o1 : ToricVectorBundleKlyachko i2 : details E o2 = HashTable{| -1 | => (| -1 0 |, | -1 0 |)} | 0 | | 0 1 | | 0 | => (| 0 1 |, | -1 0 |) | -1 | | -1 0 | | 0 | => (| 0 1 |, | -1 0 |) | 1 | | 1 0 | | 1 | => (| 1 0 |, | -1 0 |) | 0 | | 0 1 | o2 : HashTable i3 : E1 = randomDeformation(E,-2,6) o3 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 2 o3 : ToricVectorBundleKlyachko i4 : details E1 o4 = HashTable{| -1 | => (| 6 1 |, | -1 0 |) } | 0 | | 1 5 | | 0 | => (| 6 -1 |, | -1 0 |) | -1 | | 1 5 | | 0 | => (| 6 3 |, | -1 0 |) | 1 | | 0 1 | | 1 | => (| 6 6 |, | -1 0 |) | 0 | | 3 5 | o4 : HashTable

## See also

• base -- the basis matrices for the rays
• filtration -- the filtration matrices of the vector bundle
• details -- the details of a toric vector bundle
• isGeneral -- checks whether a toric vector bundle is general

## Ways to use randomDeformation :

• "randomDeformation(ToricVectorBundleKlyachko,ZZ)"
• "randomDeformation(ToricVectorBundleKlyachko,ZZ,ZZ)"

## For the programmer

The object randomDeformation is .