next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Hypertext > TEX > html(TEX)

html(TEX) -- conversion of $\TeX$ to html

Synopsis

Description

This method produces an HTML string, mainly converting several simple text formatting environments, such as bold face, italics, etc. Rendering mathematical characters and equations is done by $\KaTeX$, a JavaScript math typesetting library for browsers. See the list of supported functions and symbols for more information, or this page for an introduction to math mode in $\LaTeX$.

Equations in $..$ or \(...\) appear in inline mode, such as $x^2-1$, while those in $$..$$ or \[...\] appear in display mode:$$\begin{pmatrix} x&z\\ y&w\end{pmatrix}.$$

In addition, {\bf ...}, {\em ...}, {\it ...}, {\tt ...}, and \url{...} are converted to Hypertext objects:

res(Module) is the method for making resolutions (see https://macaulay2.com).

Here are some examples designed to illustrate various other features of this function when viewed in a browser:

$\Gamma\Omega\pi$

$\Gamma\Omega\pi$

$\partial\ell\infty$

$\partial\ell\infty$

$\Re\Im\aleph\beth$

$\Re\Im\aleph\beth$

$\NN\QQ\RR\CC\ZZ\PP$

$\NN\QQ\RR\CC\ZZ\PP$

$\binom{n}{k}$

$\binom{n}{k}$

$\sqrt[2]{\frac{a}{b}}$

$\sqrt[2]{\frac{a}{b}}$

$\sum\prod\coprod$

$\sum\prod\coprod$

$\bigoplus\bigotimes$

$\bigoplus\bigotimes$

$\bigcup\bigcap$

$\bigcup\bigcap$

$\bigvee\bigwedge$

$\bigvee\bigwedge$

$\int\oint\iint\iiint$

$\int\oint\iint\iiint$

$\oint\limits_{\partial M}$

$\oint\limits_{\partial M}$

$\lim\limits_{x\to0}$

$\lim\limits_{x\to0}$

$\min\limits_{x\to\infty}$

$\min\limits_{x\to\infty}$

$\det\limits_{x\to0}$

$\det\limits_{x\to0}$

$\Pr\limits_{x\in\RR}$

$\Pr\limits_{x\in\RR}$

$\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}$

$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$\begin{vmatrix}
 a & b \\
 c & d
\end{vmatrix}$

$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$

$\mathnormal{...}$

$\mathnormal{ABCD \; abcd \; 123}$

$\mathrm{...}$

$\mathrm{ABCD \; abcd \; 123}$

$\mathit{...}$

$\mathit{ABCD \; abcd \; 123}$

$\mathbf{...}$

$\mathbf{ABCD \; abcd \; 123}$

$\mathsf{...}$

$\mathsf{ABCD \; abcd \; 123}$

$\mathtt{...}$

$\mathtt{ABCD \; abcd \; 123}$

$\mathfrak{...}$

$\mathfrak{ABCD \; abcd \; 123}$

$\mathcal{...}$

$\mathcal{ABCD \; abcd \; 123}$

$\mathbb{...}$

$\mathbb{ABCD \; abcd \; 123}$

$\mathscr{...}$

$\mathscr{ABCD \; abcd \; 123}$

$\underline{a}$

$\underline{a}$

$\hat{a}$

$\hat{a}$

$\widehat{a}$

$\widehat{a}$

$\tilde{a}$

$\tilde{a}$

$\widetilde{a}$

$\widetilde{a}$

$\stackrel\frown{a}$

$\stackrel\frown{a}$

$\check{a}$

$\check{a}$

$\breve{a}$

$\breve{a}$

$\bar{a}$

$\bar{a}$

$\grave{a}$

$\grave{a}$

$\acute{a}$

$\acute{a}$

$\dot{a}$

$\dot{a}$

$\ddot{a}$

$\ddot{a}$

$\not{a}$

$\not{a}$

$\mathring{a}$

$\mathring{a}$

$\vec{a}$

$\vec{a}$

$\overrightarrow{a}$

$\overrightarrow{a}$

$\overleftarrow{a}$

$\overleftarrow{a}$

$\overline{a}$

$\overline{a}$

Lastly, new macros can be defined using script tags. For instance, inserting the following LITERAL item in the documentation defines the structure sheaf:

LITERAL ///<script type="text/javascript"> macros["\\OO"] = "\\mathcal{O}" </script>/// 

The macro can be used at any point after: $$ 0 \to 2\OO_{\\P^3}(-3) \to 3\OO_{\\P^3}(-2) \to \OO_{\\P^3} \to \OO_C \to 0 $$

See also