next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SchurRings :: SchurRing

SchurRing -- The class of all Schur rings

Description

A Schur ring is the representation ring for the general linear group of n\times n matrices, and one can be constructed with schurRing.

i1 : S = schurRing(QQ,s,4)

o1 = S

o1 : SchurRing

Alternatively, its elements can be interpreted as virtual characters of symmetric groups, by setting the value of the option GroupActing to "Sn".

i2 : Q = schurRing(QQ,q,4,GroupActing => "Sn")

o2 = Q

o2 : SchurRing

The element corresponding to the Young diagram \{3,2,1\}, is obtained as follows.

i3 : s_{3,2,1}

o3 = s
      3,2,1

o3 : S

Alternatively, we can use a Sequence instead of a List as the index of a Schur function.

i4 : s_(3,2,1)

o4 = s
      3,2,1

o4 : S

For Young diagrams with only one row one can use positive integers as subscripts.

i5 : q_4

o5 = q
      4

o5 : Q

The name of the Schur ring can be used with a subscript to describe a symmetric function.

i6 : Q_{2,2}

o6 = q
      2,2

o6 : Q
i7 : S_5

o7 = s
      5

o7 : S

The dimension of the underlying virtual GL-representation can be obtained with dim.

i8 : dim s_{3,2,1}

o8 = 64

Multiplication in the ring comes from tensor product of representations.

i9 : s_{3,2,1} * s_{1,1}

o9 = s      + s      + s        + s      + s        + s
      4,3,1    4,2,2    4,2,1,1    3,3,2    3,3,1,1    3,2,2,1

o9 : S
i10 : q_{2,1} * q_{2,1}

o10 = q  + q    + q
       3    2,1    1,1,1

o10 : Q

To extract data in an element in a SchurRing, use listForm:

i11 : listForm (s_{3})^2

o11 = {({6}, 1), ({5, 1}, 1), ({4, 2}, 1), ({3, 3}, 1)}

o11 : List
i12 : q_{2,1} * q_{2,1}

o12 = q  + q    + q
       3    2,1    1,1,1

o12 : Q
i13 : listForm oo

o13 = {({3}, 1), ({2, 1}, 1), ({1, 1, 1}, 1)}

o13 : List

See also

Functions and methods returning a Schur ring :

Methods that use a Schur ring :

For the programmer

The object SchurRing is a type, with ancestor classes EngineRing < Ring < Type < MutableHashTable < HashTable < Thing.