The following methods allows one to make and manipulate torus-invariant Weil divisors on a normal toric variety.

- ToricDivisor -- the class of all torus-invariant Weil divisors
- toricDivisor(List,NormalToricVariety) -- make a torus-invariant Weil divisor
- toricDivisor(NormalToricVariety) -- make the canonical divisor
- toricDivisor(Polyhedron) -- make the toric divisor associated to a polyhedron
- smallAmpleToricDivisor(ZZ,ZZ) -- get a very ample toric divisor from the database
- NormalToricVariety _ ZZ -- make an irreducible torus-invariant divisor
- normalToricVariety(ToricDivisor) -- get the underlying normal toric variety
- expression(ToricDivisor) -- get the expression used to format for printing
- support(ToricDivisor) -- make the list of irreducible divisors with nonzero coefficients
- entries(ToricDivisor) -- get the list of coefficients
- ToricDivisor + ToricDivisor -- perform arithmetic on toric divisors
- OO ToricDivisor -- make the associated rank-one reflexive sheaf
- isEffective(ToricDivisor) -- whether a torus-invariant Weil divisor is effective
- isCartier(ToricDivisor) -- whether a torus-invariant Weil divisor is Cartier
- isQQCartier(ToricDivisor) -- whether a torus-invariant Weil divisor is QQ-Cartier
- isNef(ToricDivisor) -- whether a torus-invariant Weil divisor is nef
- nefGenerators(NormalToricVariety) -- compute generators of the nef cone
- isAmple(ToricDivisor) -- whether a torus-invariant Weil divisor is ample
- isVeryAmple(ToricDivisor) -- whether a torus-invariant Weil divisor is very ample
- vertices(ToricDivisor) -- compute the vertices of the associated polytope
- latticePoints(ToricDivisor) -- compute the lattice points in the associated polytope
- monomials(ToricDivisor) -- list the monomials that span the linear series
- polytope(ToricDivisor) -- makes the associated 'Polyhedra' polyhedron

One can also work with the various groups arising from torus-invariant and the canonical maps between them.

- weilDivisorGroup(NormalToricVariety) -- make the group of torus-invariant Weil divisors
- fromWDivToCl(NormalToricVariety) -- get the map from the group of Weil divisors to the class group
- classGroup(NormalToricVariety) -- make the class group
- cartierDivisorGroup(NormalToricVariety) -- compute the group of torus-invariant Cartier divisors
- fromCDivToWDiv(NormalToricVariety) -- get the map from Cartier divisors to Weil divisors
- fromCDivToPic(NormalToricVariety) -- get the map from Cartier divisors to the Picard group
- picardGroup(NormalToricVariety) -- make the Picard group
- fromPicToCl(NormalToricVariety) -- get the map from Picard group to class group

- making normal toric varieties -- information about the basic constructors
- finding attributes and properties -- information about accessing features of a normal toric variety
- resolving singularities -- information about find a smooth proper birational surjection
- working with toric maps -- information about toric maps and the induced operations
- working with sheaves -- information about coherent sheaves and total coordinate rings (a.k.a. Cox rings)