A torus-invariant Weil divisor is effective if all the coefficients of the torus-invariant irreducible divisors are nonnegative.
The canonical divisor is not effective, but the anticanonical divisor is.
i1 : PP3 = toricProjectiveSpace 3; |
i2 : K = toricDivisor PP3 o2 = - PP3 - PP3 - PP3 - PP3 0 1 2 3 o2 : ToricDivisor on PP3 |
i3 : isEffective K o3 = false |
i4 : isEffective (-K) o4 = true |
The torus-invariant irreducible divisors generate the cone of effective divisors.