next | previous | forward | backward | up | top | index | toc | Macaulay2 website
NoetherianOperators :: noetherianOperators(Ideal)

noetherianOperators(Ideal) -- Noetherian operators of a primary ideal



Compute a set of Noetherian operators for the primary ideal I.

i1 : R = QQ[x,y,t];
i2 : I = ideal(x^2, y^2-x*t);

o2 : Ideal of R
i3 : noetherianOperators I

                 2             3
o3 = {1, dy, t*dy  + 2*dx, t*dy  + 6*dx*dy}

o3 : List

The optional argument Strategy can be used to choose different algorithms. Each strategy may accept additional optional arguments, see the documentation page for each strategy for details.


The behavior is undefined if Q is not primary. For non-primary ideals, use noetherianOperators(Ideal,Ideal)