Compute the degree of the homogeneous monomial algebra K[B].
As the result is independent of K it is possible to specify just B.
i1 : B={{2, 2, 1}, {1, 1, 3}, {1, 2, 2}, {2, 0, 3}, {1, 4, 0}, {2, 3, 0}, {1, 3, 1}} o1 = {{2, 2, 1}, {1, 1, 3}, {1, 2, 2}, {2, 0, 3}, {1, 4, 0}, {2, 3, 0}, {1, ------------------------------------------------------------------------ 3, 1}} o1 : List |
i2 : R=QQ[x_1..x_(#B),Degrees=>B] o2 = R o2 : PolynomialRing |
i3 : degreeMA R o3 = 6 |
i4 : B={{2, 2, 1}, {1, 1, 3}, {1, 2, 2}, {2, 0, 3}, {1, 4, 0}, {2, 3, 0}, {1, 3, 1}} o4 = {{2, 2, 1}, {1, 1, 3}, {1, 2, 2}, {2, 0, 3}, {1, 4, 0}, {2, 3, 0}, {1, ------------------------------------------------------------------------ 3, 1}} o4 : List |
i5 : M=monomialAlgebra B ZZ o5 = ---[x ..x ] 101 0 6 o5 : MonomialAlgebra generated by {{2, 2, 1}, {1, 1, 3}, {1, 2, 2}, {2, 0, 3}, {1, 4, 0}, {2, 3, 0}, {1, 3, 1}} |
i6 : degreeMA M o6 = 6 |
The object degreeMA is a method function with options.