# describe -- real description

## Description

describe x -- returns containing the real description of x, bypassing the feature that causes certain types of things to acquire, for brevity, the names of global variables to which they are assigned. For polynomial rings, it also displays the options used at creation.

 i1 : R = ZZ/101[a,b,c_1,c_2]; i2 : R o2 = R o2 : PolynomialRing i3 : describe R ZZ o3 = ---[a..b, c ..c , Degrees => {4:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1] 101 1 2 {GRevLex => {4:1} } {Position => Up } i4 : toString describe R o4 = (ZZ/101)[a..b, c_1..c_2, Degrees => {4:1}, Heft => {1}, MonomialOrder => VerticalList{MonomialSize => 32, GRevLex => {4:1}, Position => Up}, DegreeRank => 1] i5 : toExternalString R o5 = (ZZ/101)(monoid[a..b, c_1..c_2, Degrees => {4:1}, Heft => {1}, MonomialOrder => VerticalList{MonomialSize => 32, GRevLex => {4:1}, Position => Up}, DegreeRank => 1]) i6 : QQ[x,d,WeylAlgebra=>{x=>d}] o6 = QQ[x, d] o6 : PolynomialRing, 1 differential variables i7 : describe oo o7 = QQ[x, d, Degrees => {2:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1, WeylAlgebra => {x => d}] {GRevLex => {2:1} } {Position => Up }

## Ways to use describe :

• "describe(AffineVariety)"
• "describe(CoherentSheaf)"
• "describe(FractionField)"
• "describe(GaloisField)"
• "describe(GeneralOrderedMonoid)"
• "describe(Matrix)"
• "describe(Module)"
• "describe(PolynomialRing)"
• "describe(ProjectiveVariety)"
• "describe(QuotientRing)"
• "describe(RingMap)"
• "describe(Thing)"

## For the programmer

The object describe is .