# content -- the content of a polynomial

## Synopsis

• Usage:
content f
content(f, x)
• Inputs:
• f,
• x, , a variable in the ring of f
• Outputs:
• an ideal, the content of a matrix or polynomial

## Description

The content is the ideal in the base ring generated by the coefficients.

 i1 : R = ZZ[x,y] o1 = R o1 : PolynomialRing i2 : content(4*x + 6*x^5) o2 = ideal (6, 4) o2 : Ideal of ZZ i3 : content(4*x + 6*x^5, x) o3 = ideal (6, 4) o3 : Ideal of R i4 : content(4*x + 6*x^5, y) 5 o4 = ideal(6x + 4x) o4 : Ideal of R i5 : generator oo 5 o5 = 6x + 4x o5 : R

## Code

/usr/share/Macaulay2/Core/matrix1.m2:665:38-665:66: --source code:
content(RingElement) := Ideal => (f) -> ideal \\ last \ listForm f
/usr/share/Macaulay2/IntegralClosure.m2:1107:53-1107:97: --source code:
content(RingElement, RingElement) := Ideal => (f,x) -> ideal last coefficients(f, Variables => {x})

## Ways to use content :

• "content(RingElement)"
• "content(RingElement,RingElement)"

## For the programmer

The object content is .