next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Macaulay2Doc :: HH^ZZ SheafOfRings

HH^ZZ SheafOfRings -- cohomology of a sheaf of rings on a projective variety

Synopsis

Description

The command computes the i-th cohomology group of R as a vector space over the coefficient field of X.

i1 : Cubic = Proj(QQ[x_0..x_2]/ideal(x_0^3+x_1^3+x_2^3))

o1 = Cubic

o1 : ProjectiveVariety
i2 : HH^1(OO_Cubic)
-- ker (114) called with OptionTable: OptionTable{SubringLimit => infinity}
-- ker (114) returned CacheFunction: -*a cache function*-
-- ker (114) called with Matrix: 0
--                                        1
-- ker (114) returned Module: (QQ[x ..x ])
--                                 0   2
assert( ker(map((QQ[x_0..x_2])^0,(QQ[x_0..x_2])^1,0)) === ((QQ[x_0..x_2])^1))
-- ker (115) called with OptionTable: OptionTable{SubringLimit => infinity}
-- ker (115) returned CacheFunction: -*a cache function*-
-- ker (115) called with Matrix: 0
--                                        1
-- ker (115) returned Module: (QQ[x ..x ])
--                                 0   2
assert( ker(map((QQ[x_0..x_2])^0,(QQ[x_0..x_2])^{{-3}},0)) === ((QQ[x_0..x_2])^{{-3}}))

       1
o2 = QQ

o2 : QQ-module, free

See also