# Example first order deformation -- Example accessing the data stored in a first order deformation.

Example for accessing the data stored in a first order deformation:

 `i1 : R=QQ[x_0..x_4];` ```i2 : addCokerGrading(R) o2 = | -1 -1 -1 -1 | | 1 0 0 0 | | 0 1 0 0 | | 0 0 1 0 | | 0 0 0 1 | 5 4 o2 : Matrix ZZ <--- ZZ``` ```i3 : I=ideal(x_0*x_1,x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_0) o3 = ideal (x x , x x , x x , x x , x x ) 0 1 1 2 2 3 3 4 0 4 o3 : Ideal of R``` ```i4 : mg=mingens I; 1 5 o4 : Matrix R <--- R``` ```i5 : f=firstOrderDeformation(mg, vector {-1,-1,0,2,0}) 2 x 3 o5 = ---- x x 0 1 o5 : first order deformation space of dimension 1``` ```i6 : f.gens o6 = | x_3x_4 x_0x_4 x_2x_3 x_1x_2 x_0x_1 | 1 5 o6 : Matrix R <--- R``` ```i7 : f.bigTorusDegree o7 = | -1 | | -1 | | 0 | | 2 | | 0 | 5 o7 : ZZ``` ```i8 : simplexRing f o8 = R o8 : PolynomialRing``` ```i9 : target f o9 = cokernel | x_3x_4 x_0x_4 x_2x_3 x_1x_2 x_0x_1 | 1 o9 : R-module, quotient of R``` ```i10 : source f o10 = image | x_3x_4 x_0x_4 x_2x_3 x_1x_2 x_0x_1 | 1 o10 : R-module, submodule of R``` ```i11 : numerator f o11 = | 0 | | 0 | | 0 | | 2 | | 0 | 5 o11 : ZZ``` ```i12 : denominator f o12 = | 1 | | 1 | | 0 | | 0 | | 0 | 5 o12 : ZZ``` ```i13 : bigTorusDegree f o13 = | -1 | | -1 | | 0 | | 2 | | 0 | 5 o13 : ZZ``` ```i14 : numeratorMonomial f 2 o14 = x 3 o14 : R``` ```i15 : degree f o15 = 0 o15 : cokernel | -1 -1 -1 -1 | | 1 0 0 0 | | 0 1 0 0 | | 0 0 1 0 | | 0 0 0 1 |``` ```i16 : grading f o16 = | -1 -1 -1 -1 | | 1 0 0 0 | | 0 1 0 0 | | 0 0 1 0 | | 0 0 0 1 | 5 4 o16 : Matrix ZZ <--- ZZ``` ```i17 : isHomogeneous f o17 = true``` ```i18 : relationsCoefficients f o18 = 0 1 o18 : Matrix ZZ <--- 0``` ```i19 : parameters f o19 = | 0 | | 0 | | 0 | | 0 | | 1 | 5 1 o19 : Matrix ZZ <--- ZZ``` ```i20 : dim f o20 = 1``` ```i21 : isNonzero f o21 = true``` ```i22 : isTrivial f o22 = false```