An ordering F_{1},..F_{d} of the facets of a simplicial complex P is shellable if (F_{1} ∪.. ∪F_{k-1}) ∩F_{k} is pure of dimF_{k} -1 for all k = 2,..,d. Determines if a list of faces is a shelling order of the simplicial complex.
i1 : P = {{1, 2, 3}, {1, 2, 5}}; |
i2 : isShelling(P) o2 = true |
i3 : Q = {{1,2,3},{3,4,5},{2,3,4}}; |
i4 : isShelling(Q) o4 = false |