next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: isAffineRing

isAffineRing -- whether something is an affine ring

Synopsis

Description

For our purposes, an affine ring is a quotient of a (not necessarily commutative) polynomial ring over a field.
i1 : isAffineRing (ZZ[a,b,c,d])

o1 = false
i2 : isAffineRing (ZZ/101[a,b,c,d])

o2 = true
i3 : isAffineRing (ZZ/2[x,y,z]/(x^2-y*z))

o3 = true
i4 : isAffineRing (QQ[x,dx, WeylAlgebra => {x => dx}])

o4 = false

See also

Ways to use isAffineRing :