# describe -- real description

## Description

describe x -- returns containing the real description of x, bypassing the feature that causes certain types of things to acquire, for brevity, the names of global variables to which they are assigned. For polynomial rings, it also displays the options used at creation.

 `i1 : R = ZZ/101[a,b,c_1,c_2];` ```i2 : R o2 = R o2 : PolynomialRing``` ```i3 : describe R ZZ o3 = ---[a..b, c ..c , Degrees => {4:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1] 101 1 2 {GRevLex => {4:1} } {Position => Up }``` ```i4 : toString describe R o4 = (ZZ/101)[a..b, c_1..c_2, Degrees => {4:1}, Heft => {1}, MonomialOrder => VerticalList{MonomialSize => 32, GRevLex => {4:1}, Position => Up}, DegreeRank => 1]``` ```i5 : toExternalString R o5 = (ZZ/101)(monoid[a..b, c_1..c_2, Degrees => {4:1}, Heft => {1}, MonomialOrder => VerticalList{MonomialSize => 32, GRevLex => {4:1}, Position => Up}, DegreeRank => 1])``` ```i6 : QQ[x,d,WeylAlgebra=>{x=>d}] o6 = QQ[x, d] o6 : PolynomialRing, 1 differential variables``` ```i7 : describe oo o7 = QQ[x, d, Degrees => {2:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1, WeylAlgebra => {x => d}] {GRevLex => {2:1} } {Position => Up }```

## Ways to use describe :

• describe(AffineVariety)
• describe(CoherentSheaf)
• describe(FractionField)
• describe(GaloisField)
• describe(GeneralOrderedMonoid)
• describe(Matrix)
• describe(Module)
• describe(PolynomialRing)
• describe(ProjectiveVariety)
• describe(QuotientRing)
• describe(RingMap)
• describe(Thing)
• describe(LocalRing) (missing documentation)