Description
If the ring of
M is a base ring of
R, then the matrix presenting the module will be simply promoted (see
promote). Otherwise, a ring map from the ring of
M to
R will be constructed by examining the names of the variables, as described in
(map,Ring,Ring) (missing documentation).
i1 : R = ZZ/101[x,y];

i2 : M = coker vars R
o2 = cokernel  x y 
1
o2 : Rmodule, quotient of R

i3 : M ** R[t]
o3 = cokernel  x y 
1
o3 : R[t]module, quotient of (R[t])
