next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: Module ** Ring

Module ** Ring -- tensor product

Synopsis

Description

If the ring of M is a base ring of R, then the matrix presenting the module will be simply promoted (see promote). Otherwise, a ring map from the ring of M to R will be constructed by examining the names of the variables, as described in (map,Ring,Ring) (missing documentation).
i1 : R = ZZ/101[x,y];
i2 : M = coker vars R

o2 = cokernel | x y |

                            1
o2 : R-module, quotient of R
i3 : M ** R[t]

o3 = cokernel | x y |

                                    1
o3 : R[t]-module, quotient of (R[t])