next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
InvolutiveBases :: janetBasis

janetBasis -- compute Janet basis for an ideal or a submodule of a free module

Synopsis

Description

If the argument for janetBasis is a matrix or an ideal or a Groebner basis, then J is a Janet basis for (the module generated by) M.

If the arguments for janetBasis are a chain complex and an integer, where C is the result of either janetResolution or resolution called with the optional argument 'Strategy => Involutive', then J is the Janet basis extracted from the n-th differential of C.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3,y^2);

o2 : Ideal of R
i3 : J = janetBasis I;
i4 : basisElements J

o4 = | y2 xy2 x3 x2y2 |

             1       4
o4 : Matrix R  <--- R
i5 : multVar J

o5 = {set {y}, set {y}, set {x, y}, set {y}}

o5 : List
i6 : R = QQ[x,y];
i7 : M = matrix {{x*y-y^3, x*y^2, x*y-x}, {x, y^2, x}};

             2       3
o7 : Matrix R  <--- R
i8 : J = janetBasis M;
i9 : basisElements J

o9 = | y3-x xy-x x2y-x2 x3 -x      x2 -x2        0         |
     | 0    x    x2     x2 xy-y2+x y3 x2y-xy2+x2 x3+2x2+y2 |

             2       8
o9 : Matrix R  <--- R
i10 : multVar J

o10 = {set {y}, set {y}, set {y}, set {x, y}, set {y}, set {y}, set {y}, set
      -----------------------------------------------------------------------
      {x, y}}

o10 : List
i11 : R = QQ[x,y,z];
i12 : I = ideal(x,y,z);

o12 : Ideal of R
i13 : C = res(I, Strategy => Involutive)

       1      3      3      1
o13 = R  <-- R  <-- R  <-- R  <-- 0
                                   
      0      1      2      3      4

o13 : ChainComplex
i14 : janetBasis(C, 2)

      +------+---------+
o14 = || -y ||{z, y, x}|
      ||  x ||         |
      ||  0 ||         |
      +------+---------+
      || -z ||{z, y, x}|
      ||  0 ||         |
      ||  x ||         |
      +------+---------+
      ||  0 ||{z, y}   |
      || -z ||         |
      ||  y ||         |
      +------+---------+

o14 : InvolutiveBasis

See also

Ways to use janetBasis :