If the argument for janetBasis is a matrix or an ideal or a Groebner basis, then J is a Janet basis for (the module generated by) M.
If the arguments for janetBasis are a chain complex and an integer, where C is the result of either janetResolution or resolution called with the optional argument 'Strategy => Involutive', then J is the Janet basis extracted from the n-th differential of C.
i1 : R = QQ[x,y]; |
i2 : I = ideal(x^3,y^2); o2 : Ideal of R |
i3 : J = janetBasis I; |
i4 : basisElements J o4 = | y2 xy2 x3 x2y2 | 1 4 o4 : Matrix R <--- R |
i5 : multVar J o5 = {set {y}, set {y}, set {x, y}, set {y}} o5 : List |
i6 : R = QQ[x,y]; |
i7 : M = matrix {{x*y-y^3, x*y^2, x*y-x}, {x, y^2, x}}; 2 3 o7 : Matrix R <--- R |
i8 : J = janetBasis M; |
i9 : basisElements J o9 = | y3-x xy-x x2y-x2 x3 -x x2 -x2 0 | | 0 x x2 x2 xy-y2+x y3 x2y-xy2+x2 x3+2x2+y2 | 2 8 o9 : Matrix R <--- R |
i10 : multVar J o10 = {set {y}, set {y}, set {y}, set {x, y}, set {y}, set {y}, set {y}, set ----------------------------------------------------------------------- {x, y}} o10 : List |
i11 : R = QQ[x,y,z]; |
i12 : I = ideal(x,y,z); o12 : Ideal of R |
i13 : C = res(I, Strategy => Involutive) 1 3 3 1 o13 = R <-- R <-- R <-- R <-- 0 0 1 2 3 4 o13 : ChainComplex |
i14 : janetBasis(C, 2) +------+---------+ o14 = || -y ||{z, y, x}| || x || | || 0 || | +------+---------+ || -z ||{z, y, x}| || 0 || | || x || | +------+---------+ || 0 ||{z, y} | || -z || | || y || | +------+---------+ o14 : InvolutiveBasis |