If the argument of basisElements is an instance of the type InvolutiveBasis, then the columns of B are generators for the module spanned by the involutive basis. These columns form a Gr\"obner basis for this module.
If the argument of basisElements is an instance of the type FactorModuleBasis, then the columns of B are generators for the monomial cones in the factor module basis.
i1 : R = QQ[x,y]; |
i2 : I = ideal(x^3,y^2); o2 : Ideal of R |
i3 : J = janetBasis I; |
i4 : basisElements J o4 = | y2 xy2 x3 x2y2 | 1 4 o4 : Matrix R <--- R |
i5 : R = QQ[x,y,z]; |
i6 : M = matrix {{x*y,x^3*z}}; 1 2 o6 : Matrix R <--- R |
i7 : J = janetBasis M; |
i8 : F = factorModuleBasis J +--+------+ o8 = |1 |{z, y}| +--+------+ |x |{z} | +--+------+ | 2| | |x |{z} | +--+------+ | 3| | |x |{x} | +--+------+ o8 : FactorModuleBasis |
i9 : basisElements F o9 = | 1 x x2 x3 | 1 4 o9 : Matrix R <--- R |
i10 : multVar F o10 = {set {y, z}, set {z}, set {z}, set {x}} o10 : List |