next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
ConformalBlocks :: symmetrizedConformalBlockDivisor

symmetrizedConformalBlockDivisor -- computes the symmetrization of the first Chern class of a conformal block vector bundle

Synopsis

Description

This function implements the formula given in [Fakh] Corollary 3.6. It computes the symmetrization of the first Chern class of a conformal block vector bundle: Sn c1 V(g,l,(λσ1,...λσn)).

NEW in Version 2.1: Previously there was a separate, faster function to use in the case that λ1 = ... = λn. However, now this function automatically checks for symmetry and uses the faster formula if applicable, so the user does not need to use two separate functions.

In the example below, we compute the symmetrization of the divisor class of the conformal block bundle V(sl4,1,(ω112233)).

i1 : sl_4 =simpleLieAlgebra("A",3);
i2 : V=conformalBlockVectorBundle(sl_4,1,{{1,0,0},{1,0,0},{0,1,0},{0,1,0},{0,0,1},{0,0,1}},0);
i3 : D=symmetrizedConformalBlockDivisor(V)

o3 = 288*B  + 288*B
          2        3

o3 : S_6-symmetric divisor on M-0-6-bar

Ways to use symmetrizedConformalBlockDivisor :