A symmetric divisor on M0,n may be created in either one of two ways. The user may either enter the number of marked points n and a linear polynomial in the standard basis classes Bi, or enter n and a list of the coefficients of D in the standard basis. Both usages are demonstrated in the example below.
i1 : D=symmetricDivisorM0nbar(6,{2,3}) o1 = 2*B + 3*B 2 3 o1 : S_6-symmetric divisor on M-0-6-bar |
i2 : E=symmetricDivisorM0nbar(6,2*B_2+3*B_3) o2 = 2*B + 3*B 2 3 o2 : S_6-symmetric divisor on M-0-6-bar |
i3 : D==E o3 = true |