next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
ConformalBlocks :: symmetricCurveDotDivisorM0nbar

symmetricCurveDotDivisorM0nbar -- the intersection number of a symmetric F-curve C with the symmetric divisor D

Synopsis

Description

This function implements the basic formula of [KM] Corollary 4.4 for intersecting an Sn-symmetric F curve with an Sn symmetric divisor on M0,n.

i1 : D=symmetricDivisorM0nbar(6,2*B_2+B_3)

o1 = 2*B  + B
        2    3

o1 : S_6-symmetric divisor on M-0-6-bar
i2 : symmetricCurveDotDivisorM0nbar({3,1,1,1},D)

o2 = 5
i3 : E=symmetricDivisorM0nbar(6,B_2+3*B_3)

o3 = B  + 3*B
      2      3

o3 : S_6-symmetric divisor on M-0-6-bar
i4 : symmetricCurveDotDivisorM0nbar({3,1,1,1},E)

o4 = 0

Ways to use symmetricCurveDotDivisorM0nbar :