next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
ConformalBlocks :: kappaDivisorM0nbar

kappaDivisorM0nbar -- the class of the divisor kappa

Synopsis

Description

On M0,n, the divisor kappa may be defined by K + Δ, where K is the canonical divisor, and Δ is the sum of the boundary classes Bi. A fun fact is that kappa . FI1,I2,I3,I4 =1 for every F curve.

i1 : kappaDivisorM0nbar(14)

     11      20      27      32      35      36
o1 = --*B  + --*B  + --*B  + --*B  + --*B  + --*B
     13  2   13  3   13  4   13  5   13  6   13  7

o1 : S_14-symmetric divisor on M-0-14-bar

Ways to use kappaDivisorM0nbar :