next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
ConformalBlocks :: conformalBlockRank

conformalBlockRank -- computes the rank of the conformal block vector bundle

Synopsis

Description

This function uses propagation and factorization to recursively compute ranks in terms of the ranks on M0,3. These are determined by the so-called fusion rules and are computed via the function fusionCoefficient in the LieTypes package. See [Beauville] for details on these topics.

In the example below we compute the rank of the conformal block bundle V(sl3,2,(ω1122)).

i1 : sl_3=simpleLieAlgebra("A",2);
i2 : V=conformalBlockVectorBundle(sl_3,2,{{1,0},{1,0},{0,1},{0,1}},0)

o2 = V

o2 : Conformal block vector bundle on M-0-4-bar
i3 : conformalBlockRank(V)

o3 = 2

Ways to use conformalBlockRank :