This function implements the formulas given in [Fakh] Prop. 2.7 and Cor. 3.5. Note: in contrast with most of the other functions in this package, this function is for UNsymmetrized curves and bundles. The F curve must be entered as a partition of the set 1,...,n into four nonempty subsets.
The example below shows that the first Chern class of the conformal block bundle V(sl2,1,(1,1,1,1,1,1)) intersects the F curve F123,4,5,6 positively, and intersects F12,34,5,6 in degree zero.
i1 : sl_2=simpleLieAlgebra("A",1); |
i2 : V=conformalBlockVectorBundle(sl_2,1,{{1},{1},{1},{1},{1},{1}},0); |
i3 : FCurveDotConformalBlockDivisor({{1,2,3},{4},{5},{6}},V) o3 = 1 |
i4 : FCurveDotConformalBlockDivisor({{1,2},{3,4},{5},{6}},V) o4 = 0 |
i5 : sl_3=simpleLieAlgebra("A",2); |
i6 : W=conformalBlockVectorBundle(sl_3,1,{{0,1},{1,0},{1,0},{1,0},{1,0}},0); |
i7 : FCurveDotConformalBlockDivisor({{4,5},{1},{2},{3}},W) o7 = 1 |