# Cremona -- package for some computations on rational maps between projective varieties

## Description

Cremona is a package to perform some basic computations on rational and birational maps between absolutely irreducible projective varieties over a field K. For instance, it provides general methods to compute degrees and projective degrees of rational maps (see degreeOfRationalMap and projectiveDegrees) and a general method to compute the push-forward to projective space of Segre classes (see SegreClass). Moreover, all the main methods are available both in version probabilistic and in version deterministic, and one can switch from one to the other with the boolean option MathMode.

Let Φ:X ---> Y be a rational map from a subvariety X=V(I)⊆ℙn=Proj(K[x0,...,xn]) to a subvariety Y=V(J)⊆ℙm=Proj(K[y0,...,ym]). We assume that the map Φ can be represented, although not uniquely, by a homogeneous ring map φ:K[y0,...,ym]/J →K[x0,...,xn]/I of quotients of polynomial rings by homogeneous ideals. These kinds of ring maps, together with the objects of the RationalMap class, are the typical inputs for the methods in this package. The method toMap (resp. rationalMap) constructs such a ring map (resp. rational map) from a list of m+1 homogeneous elements of the same degree in K[x0,...,xn]/I.

Below is an example using the methods provided by this package, dealing with a birational transformation Φ:ℙ6 ---> G(2,4)⊂ℙ9 of bidegree (3,3).

 `i1 : ZZ/300007[t_0..t_6];` ```i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}}) -- used 0.0483768 seconds ZZ ZZ 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 o2 = map(------[t , t , t , t , t , t , t ],------[x , x , x , x , x , x , x , x , x , x ],{- t + 2t t t - t t - t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t , - t t + t t t + t t t - t t t - t t + t t t , - t t t + t t + t t - t t t - t t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t t + t t t - t t - t t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t }) 300007 0 1 2 3 4 5 6 300007 0 1 2 3 4 5 6 7 8 9 2 1 2 3 0 3 1 4 0 2 4 2 3 1 3 1 2 4 0 3 4 1 5 0 2 5 2 3 2 4 1 3 4 0 4 1 2 5 0 3 5 3 2 3 4 1 4 2 5 1 3 5 2 4 1 3 4 1 2 5 0 3 5 1 6 0 2 6 2 3 4 1 4 2 5 0 4 5 1 2 6 0 3 6 3 4 2 4 2 3 5 1 4 5 2 6 1 3 6 2 4 2 3 5 1 4 5 0 5 1 3 6 0 4 6 3 4 3 5 2 4 5 1 5 2 3 6 1 4 6 4 3 4 5 2 5 3 6 2 4 6 ZZ ZZ o2 : RingMap ------[t , t , t , t , t , t , t ] <--- ------[x , x , x , x , x , x , x , x , x , x ] 300007 0 1 2 3 4 5 6 300007 0 1 2 3 4 5 6 7 8 9``` ```i3 : time J = kernel(phi,2) -- used 0.0883422 seconds o3 = ideal (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 ------------------------------------------------------------------------ - x x + x x , x x - x x + x x ) 1 6 0 8 2 4 1 5 0 7 ZZ o3 : Ideal of ------[x , x , x , x , x , x , x , x , x , x ] 300007 0 1 2 3 4 5 6 7 8 9``` ```i4 : time degreeOfRationalMap phi -- used 0.0422133 seconds o4 = 1``` ```i5 : time projectiveDegrees phi -- used 0.280131 seconds o5 = {1, 3, 9, 17, 21, 15, 5} o5 : List``` ```i6 : time projectiveDegrees(phi,NumDegrees=>0) -- used 0.0748683 seconds o6 = {5} o6 : List``` ```i7 : time phi = toMap(phi,Dominant=>J) -- used 0.00164389 seconds ZZ ------[x , x , x , x , x , x , x , x , x , x ] ZZ 300007 0 1 2 3 4 5 6 7 8 9 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 o7 = map(------[t , t , t , t , t , t , t ],----------------------------------------------------------------------------------------------------,{- t + 2t t t - t t - t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t , - t t + t t t + t t t - t t t - t t + t t t , - t t t + t t + t t - t t t - t t t + t t t , - t t + t t + t t t - t t t - t t + t t t , - t t + t t t + t t t - t t - t t t + t t t , - t t + t t + t t t - t t - t t t + t t t , - t + 2t t t - t t - t t + t t t }) 300007 0 1 2 3 4 5 6 (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 2 1 2 3 0 3 1 4 0 2 4 2 3 1 3 1 2 4 0 3 4 1 5 0 2 5 2 3 2 4 1 3 4 0 4 1 2 5 0 3 5 3 2 3 4 1 4 2 5 1 3 5 2 4 1 3 4 1 2 5 0 3 5 1 6 0 2 6 2 3 4 1 4 2 5 0 4 5 1 2 6 0 3 6 3 4 2 4 2 3 5 1 4 5 2 6 1 3 6 2 4 2 3 5 1 4 5 0 5 1 3 6 0 4 6 3 4 3 5 2 4 5 1 5 2 3 6 1 4 6 4 3 4 5 2 5 3 6 2 4 6 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7 ZZ ------[x , x , x , x , x , x , x , x , x , x ] ZZ 300007 0 1 2 3 4 5 6 7 8 9 o7 : RingMap ------[t , t , t , t , t , t , t ] <--- ---------------------------------------------------------------------------------------------------- 300007 0 1 2 3 4 5 6 (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7``` ```i8 : time psi = inverseMap phi -- used 0.435119 seconds ZZ ------[x , x , x , x , x , x , x , x , x , x ] 300007 0 1 2 3 4 5 6 7 8 9 ZZ 3 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 o8 = map(----------------------------------------------------------------------------------------------------,------[t , t , t , t , t , t , t ],{x - 2x x x + x x - x x x + x x + x x + x x x - x x x + x x - 2x x x - x x x - 2x x , x x - x x - x x x + x x x + x x x + x x - 2x x x - x x x + x x x , x x - x x x + x x - x x x + x x - x x x - x x x , x - x x x + x x x + x x x - 2x x x - x x x , x x - x x x + x x + x x - x x x - x x x - x x x , x x - x x - x x x + x x + x x x + x x x - 2x x x - x x x + x x x , x - 2x x x - x x x + x x + x x + x x + x x + x x x - 2x x x - x x x - x x x - 2x x }) (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 300007 0 1 2 3 4 5 6 2 1 2 3 0 3 1 2 5 0 5 1 6 0 2 6 0 4 6 1 7 0 2 7 0 4 7 0 9 2 3 1 3 1 2 6 0 3 6 0 5 6 1 8 0 2 8 0 4 8 0 1 9 2 3 1 3 6 0 6 0 3 8 1 9 0 2 9 0 4 9 3 1 3 8 0 6 8 1 2 9 0 3 9 0 5 9 3 6 2 3 8 0 8 2 9 1 3 9 0 6 9 0 7 9 3 6 3 8 2 6 8 1 8 2 3 9 2 5 9 1 6 9 1 7 9 0 8 9 6 3 6 8 5 6 8 2 8 4 8 3 9 5 9 2 6 9 4 6 9 2 7 9 4 7 9 0 9 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7 ZZ ------[x , x , x , x , x , x , x , x , x , x ] 300007 0 1 2 3 4 5 6 7 8 9 ZZ o8 : RingMap ---------------------------------------------------------------------------------------------------- <--- ------[t , t , t , t , t , t , t ] (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) 300007 0 1 2 3 4 5 6 6 7 5 8 4 9 3 7 2 8 1 9 3 5 2 6 0 9 3 4 1 6 0 8 2 4 1 5 0 7``` ```i9 : time isInverseMap(phi,psi) -- used 0.00568038 seconds o9 = true``` ```i10 : time degreeOfRationalMap psi -- used 0.0357872 seconds o10 = 1``` ```i11 : time projectiveDegrees psi -- used 0.943147 seconds o11 = {5, 15, 21, 17, 9, 3, 1} o11 : List```

We repeat the example using the type RationalMap and using deterministic methods.

 ```i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}}) -- used 0.00215933 seconds o12 = -- rational map -- ZZ source: Proj(------[t , t , t , t , t , t , t ]) 300007 0 1 2 3 4 5 6 ZZ target: Proj(------[x , x , x , x , x , x , x , x , x , x ]) 300007 0 1 2 3 4 5 6 7 8 9 defining forms: { 3 2 2 - t + 2t t t - t t - t t + t t t , 2 1 2 3 0 3 1 4 0 2 4 2 2 2 - t t + t t + t t t - t t t - t t + t t t , 2 3 1 3 1 2 4 0 3 4 1 5 0 2 5 2 2 2 - t t + t t + t t t - t t - t t t + t t t , 2 3 2 4 1 3 4 0 4 1 2 5 0 3 5 3 2 2 - t + 2t t t - t t - t t + t t t , 3 2 3 4 1 4 2 5 1 3 5 2 2 - t t + t t t + t t t - t t t - t t + t t t , 2 4 1 3 4 1 2 5 0 3 5 1 6 0 2 6 2 2 - t t t + t t + t t - t t t - t t t + t t t , 2 3 4 1 4 2 5 0 4 5 1 2 6 0 3 6 2 2 2 - t t + t t + t t t - t t t - t t + t t t , 3 4 2 4 2 3 5 1 4 5 2 6 1 3 6 2 2 - t t + t t t + t t t - t t - t t t + t t t , 2 4 2 3 5 1 4 5 0 5 1 3 6 0 4 6 2 2 2 - t t + t t + t t t - t t - t t t + t t t , 3 4 3 5 2 4 5 1 5 2 3 6 1 4 6 3 2 2 - t + 2t t t - t t - t t + t t t 4 3 4 5 2 5 3 6 2 4 6 } o12 : RationalMap (cubic rational map from PP^6 to PP^9)``` ```i13 : time phi = rationalMap(phi,Dominant=>2) -- used 0.127684 seconds o13 = -- rational map -- ZZ source: Proj(------[t , t , t , t , t , t , t ]) 300007 0 1 2 3 4 5 6 ZZ target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by 300007 0 1 2 3 4 5 6 7 8 9 { x x - x x + x x , 6 7 5 8 4 9 x x - x x + x x , 3 7 2 8 1 9 x x - x x + x x , 3 5 2 6 0 9 x x - x x + x x , 3 4 1 6 0 8 x x - x x + x x 2 4 1 5 0 7 } defining forms: { 3 2 2 - t + 2t t t - t t - t t + t t t , 2 1 2 3 0 3 1 4 0 2 4 2 2 2 - t t + t t + t t t - t t t - t t + t t t , 2 3 1 3 1 2 4 0 3 4 1 5 0 2 5 2 2 2 - t t + t t + t t t - t t - t t t + t t t , 2 3 2 4 1 3 4 0 4 1 2 5 0 3 5 3 2 2 - t + 2t t t - t t - t t + t t t , 3 2 3 4 1 4 2 5 1 3 5 2 2 - t t + t t t + t t t - t t t - t t + t t t , 2 4 1 3 4 1 2 5 0 3 5 1 6 0 2 6 2 2 - t t t + t t + t t - t t t - t t t + t t t , 2 3 4 1 4 2 5 0 4 5 1 2 6 0 3 6 2 2 2 - t t + t t + t t t - t t t - t t + t t t , 3 4 2 4 2 3 5 1 4 5 2 6 1 3 6 2 2 - t t + t t t + t t t - t t - t t t + t t t , 2 4 2 3 5 1 4 5 0 5 1 3 6 0 4 6 2 2 2 - t t + t t + t t t - t t - t t t + t t t , 3 4 3 5 2 4 5 1 5 2 3 6 1 4 6 3 2 2 - t + 2t t t - t t - t t + t t t 4 3 4 5 2 5 3 6 2 4 6 } o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)``` ```i14 : time phi^(-1) -- used 0.417272 seconds o14 = -- rational map -- ZZ source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by 300007 0 1 2 3 4 5 6 7 8 9 { x x - x x + x x , 6 7 5 8 4 9 x x - x x + x x , 3 7 2 8 1 9 x x - x x + x x , 3 5 2 6 0 9 x x - x x + x x , 3 4 1 6 0 8 x x - x x + x x 2 4 1 5 0 7 } ZZ target: Proj(------[t , t , t , t , t , t , t ]) 300007 0 1 2 3 4 5 6 defining forms: { 3 2 2 2 2 2 x - 2x x x + x x - x x x + x x + x x + x x x - x x x + x x - 2x x x - x x x - 2x x , 2 1 2 3 0 3 1 2 5 0 5 1 6 0 2 6 0 4 6 1 7 0 2 7 0 4 7 0 9 2 2 2 x x - x x - x x x + x x x + x x x + x x - 2x x x - x x x + x x x , 2 3 1 3 1 2 6 0 3 6 0 5 6 1 8 0 2 8 0 4 8 0 1 9 2 2 2 x x - x x x + x x - x x x + x x - x x x - x x x , 2 3 1 3 6 0 6 0 3 8 1 9 0 2 9 0 4 9 3 x - x x x + x x x + x x x - 2x x x - x x x , 3 1 3 8 0 6 8 1 2 9 0 3 9 0 5 9 2 2 2 x x - x x x + x x + x x - x x x - x x x - x x x , 3 6 2 3 8 0 8 2 9 1 3 9 0 6 9 0 7 9 2 2 2 x x - x x - x x x + x x + x x x + x x x - 2x x x - x x x + x x x , 3 6 3 8 2 6 8 1 8 2 3 9 2 5 9 1 6 9 1 7 9 0 8 9 3 2 2 2 2 2 x - 2x x x - x x x + x x + x x + x x + x x + x x x - 2x x x - x x x - x x x - 2x x 6 3 6 8 5 6 8 2 8 4 8 3 9 5 9 2 6 9 4 6 9 2 7 9 4 7 9 0 9 } o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9 to PP^6)``` ```i15 : time degrees phi^(-1) -- used 0.279359 seconds o15 = {5, 15, 21, 17, 9, 3, 1} o15 : List``` ```i16 : time degrees phi -- used 0.000020887 seconds o16 = {1, 3, 9, 17, 21, 15, 5} o16 : List``` ```i17 : time describe phi -- used 0.0013101 seconds o17 = rational map defined by forms of degree 3 source variety: PP^6 target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2 dominance: true birationality: true (the inverse map is known) projective degrees: {1, 3, 9, 17, 21, 15, 5} coefficient ring: ZZ/300007``` ```i18 : time describe phi^(-1) -- used 0.00716912 seconds o18 = rational map defined by forms of degree 3 source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2 target variety: PP^6 dominance: true birationality: true (the inverse map is known) projective degrees: {5, 15, 21, 17, 9, 3, 1} number of minimal representatives: 1 dimension base locus: 4 degree base locus: 24 coefficient ring: ZZ/300007``` ```i19 : time (f,g) = graph phi^-1; f; -- used 0.0083936 seconds o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)``` ```i21 : time degrees f -- used 1.29199 seconds o21 = {904, 508, 268, 130, 56, 20, 5} o21 : List``` ```i22 : time degree f -- used 0.000016592 seconds o22 = 1``` ```i23 : time describe f -- used 0.00111498 seconds o23 = rational map defined by multiforms of degree {1, 0} source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20 hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2, 0},{2, 0}) target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2 dominance: true birationality: true projective degrees: {904, 508, 268, 130, 56, 20, 5} coefficient ring: ZZ/300007```

A rudimentary version of Cremona has been already used in an essential way in the paper doi:10.1016/j.jsc.2015.11.004 (it was originally named bir.m2).

## Author

• Giovanni Staglianò

## Certification

Version 4.2.2 of this package was accepted for publication in volume 8 of the journal The Journal of Software for Algebra and Geometry on 11 June 2018, in the article A Macaulay2 package for computations with rational maps. That version can be obtained from the journal or from the Macaulay2 source code repository, http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Cremona.m2, commit number 2e87a29e4b5b68af1bd8917a9c76d4008ff9fc5b.

## Version

This documentation describes version 4.3 of Cremona.

## Source code

The source code from which this documentation is derived is in the file Cremona.m2. The auxiliary files accompanying it are in the directory Cremona/.