- Usage:
`l = rationalPoints I`

- Inputs:
`I`, which is an ideal contained in a polynomial ring over a finite field.

- Optional inputs:
`UseGB =>`a Boolean value, default value false, turns on and off a Groebner basis computation of the ideal. Default is false.`UseMinGens =>`a Boolean value, default value false, turns on and off a mingens computation of the ideal that may change the chosen generators.`SortGens =>`a Boolean value, default value false, sorts generators in order to make searching for zeroes more efficient.`LowMem =>`a Boolean value, default value false, uses an alternative algorithm that is slower but much less memory intensive.`Amount =>`a Boolean value, default value false, output changes to the number of zeroes.`Verbose =>`a Boolean value, default value false, output includes the generators of the ideal that the computation uses. These may be modified by UseGB or UseMinGens

- Outputs:
`l`, a list, a list of lists. Each internal list is an n-tuple of elements of the finite field such that the n-tuple represents a point in Affine n-space lying on the variety defined by the input ideal`I`.

i1 : R = ZZ/5[x_1..x_4]; |

i2 : I = ideal(x_2^2+x_1*x_2+1, x_1*x_2*x_3*x_4+1); o2 : Ideal of R |

i3 : p = rationalPoints I o3 = {{-2, 1, 1, 3}, {2, 4, 1, 3}, {-2, 1, 3, 1}, {2, 4, 3, 1}, {-2, 1, 2, ------------------------------------------------------------------------ 4}, {2, 4, 2, 4}, {-2, 1, 4, 2}, {2, 4, 4, 2}} o3 : List |

This symbol is provided by the package RationalPoints.

- rationalPoints(Ideal)