next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
FThresholds :: mu

mu -- computes the largest Frobenius power of an ideal not contained in a specified Frobenius power

Synopsis

Description

Given an ideal I in a polynomial ring k[x1, ..., xn], mu(e, I, J) or mu(e, f, J) outputs the maximal integer N such that the N-th generalized Frobenius power of I, or fN, is not contained in the pe-th Frobenius power of J.

i1 : R = ZZ/3[x,y];
i2 : I = ideal(x^2, x+y);

o2 : Ideal of R
i3 : J = ideal(x, y^2);

o3 : Ideal of R
i4 : mu(2,I,J)

o4 = 17
i5 : mu(3,I)

o5 = 26
i6 : mu(3,x^3+y^3,J)

o6 = 17

See also

Ways to use mu :