This function computes the degree and codimension of the projective toric variety XA, we do not assume that XA is normal. This function uses polarDegrees internally and this information can also be obtained from the polarDegrees function.
i1 : A=matrix{{0, 0, 0, 1, 1,5},{7,0, 1, 3, 0, -2},{1,1, 1, 1, 1, 1}} o1 = | 0 0 0 1 1 5 | | 7 0 1 3 0 -2 | | 1 1 1 1 1 1 | 3 6 o1 : Matrix ZZ <--- ZZ |
i2 : dc=dualDegCodim(A) o2 = HashTable{dualCodim => 1 } dualDegree => 53 o2 : HashTable |
i3 : dc#"dualCodim" o3 = 1 |
i4 : dc#"dualDegree" o4 = 53 o4 : QQ |
i5 : pd=polarDegrees(A); The toric variety has degree = 35 The dual variety has degree = 53, and codimension = 1 Chern-Mather Volumes: (V_0,..,V_(d-1)) = {-12, 20, 35} Polar Degrees: {53, 85, 35} ED Degree = 173 5 4 3 Chern-Mather Class: - 12h + 20h + 35h |