This function computes the Chern-Mather class of the projective toric variety XA pushedforward to the Chow ring of the ambient projective space, we do not assume that XA is normal.
i1 : A=matrix{{0, 0, 0, 1, 1,5},{7,0, 1, 3, 0, -2},{1,1, 1, 1, 1, 1}} o1 = | 0 0 0 1 1 5 | | 7 0 1 3 0 -2 | | 1 1 1 1 1 1 | 3 6 o1 : Matrix ZZ <--- ZZ |
i2 : cmClass(A) 5 4 3 o2 = - 12h + 20h + 35h ZZ[h] o2 : ----- 6 h |
i3 : A=matrix{{3, 0, 0, 1, 1,2}, {3,5,0,2,1,3},{0, 1, 2, 0, 2,0},{1, 1, 1, 1, 1,1}} o3 = | 3 0 0 1 1 2 | | 3 5 0 2 1 3 | | 0 1 2 0 2 0 | | 1 1 1 1 1 1 | 4 6 o3 : Matrix ZZ <--- ZZ |
i4 : cmh=cmClass(A,Output=>HashTable); |
i5 : cmh#"CM class" 5 4 3 2 o5 = 20h + 23h + 31h + 28h ZZ[h] o5 : ----- 6 h |
i6 : cmh#"polar degrees" o6 = {45, 98, 81, 28} o6 : List |
i7 : cmh#"dual degree" o7 = 45 o7 : QQ |
i8 : cmh#"dual codim" o8 = 1 |
i9 : cmh#"ED" o9 = 252 o9 : QQ |
i10 : cmh#"degree" o10 = 28 o10 : QQ |