# kleinschmidt(ZZ,List) -- make a smooth normal toric variety with Picard rank two

## Synopsis

• Usage:
kleinschmidt (d,a)
• Function: kleinschmidt
• Inputs:
• d, an integer, that specifies the dimension of toric variety
• a, a list, an increasing list of at most d-1 nonnegative integers
• Optional inputs:
• CoefficientRing => a ring, default value QQ, that specifies the coefficient ring of the total coordinate ring
• Variable => , default value x, that specifies the base symbol for the indexed variables in the total coordinate ring
• Outputs:
• , a smooth toric variety with Picard rank two

## Description

Peter Kleinschmidt constructs (up to isomorphism) all smooth normal toric varieties with dimension d and d+2 rays; see P. Kleinschmidt, A classification of toric varieties with few generators Aequationes Mathematicae, 35 (1998) 254-266.

When d=2, we obtain a variety isomorphic to a Hirzebruch surface. By permuting the indexing of the rays and taking an automorphism of the lattice, we produce an explicit isomorphism.

 `i1 : X = kleinschmidt (2,{3});` ```i2 : rays X o2 = {{-1, 0}, {1, 0}, {0, 1}, {3, -1}} o2 : List``` ```i3 : max X o3 = {{0, 2}, {0, 3}, {1, 2}, {1, 3}} o3 : List``` `i4 : FF3 = hirzebruchSurface 3;` ```i5 : rays FF3 o5 = {{1, 0}, {0, 1}, {-1, 3}, {0, -1}} o5 : List``` ```i6 : max FF3 o6 = {{0, 1}, {0, 3}, {1, 2}, {2, 3}} o6 : List``` ```i7 : permutingRays = matrix {{0,0,0,1},{0,1,0,0},{1,0,0,0},{0,0,1,0}} o7 = | 0 0 0 1 | | 0 1 0 0 | | 1 0 0 0 | | 0 0 1 0 | 4 4 o7 : Matrix ZZ <--- ZZ``` ```i8 : latticeAutomorphism = matrix {{0,1},{1,0}} o8 = | 0 1 | | 1 0 | 2 2 o8 : Matrix ZZ <--- ZZ``` `i9 : assert (latticeAutomorphism * (matrix transpose rays X) * permutingRays == matrix transpose rays FF3)`

The normal toric variety associated to the pair (d,a) is Fano if and only if i=0r-1 ai < d-r+1.

 `i10 : X1 = kleinschmidt (3, {0,1});` ```i11 : isFano X1 o11 = true``` `i12 : X2 = kleinschmidt (4, {0,0});` ```i13 : isFano X2 o13 = true``` ```i14 : ring X2 o14 = QQ[x , x , x , x , x , x ] 0 1 2 3 4 5 o14 : PolynomialRing``` `i15 : X3 = kleinschmidt (9, {1,2,3}, CoefficientRing => ZZ/32003, Variable => y);` ```i16 : isFano X3 o16 = true``` ```i17 : ring X3 ZZ o17 = -----[y , y , y , y , y , y , y , y , y , y , y ] 32003 0 1 2 3 4 5 6 7 8 9 10 o17 : PolynomialRing```

The map from the torus-invariant Weil divisors to the class group is chosen so that the positive orthant corresponds to the cone of nef line bundles.

 ```i18 : nefGenerators X o18 = | 1 0 | | 0 1 | 2 2 o18 : Matrix ZZ <--- ZZ``` ```i19 : nefGenerators X1 o19 = | 1 0 | | 0 1 | 2 2 o19 : Matrix ZZ <--- ZZ``` ```i20 : nefGenerators X2 o20 = | 1 0 | | 0 1 | 2 2 o20 : Matrix ZZ <--- ZZ``` ```i21 : nefGenerators X3 o21 = | 1 0 | | 0 1 | 2 2 o21 : Matrix ZZ <--- ZZ```