# manipulating modules

Suppose we have a module that is represented as an image of a matrix, and we want to represent it as a cokernel of a matrix. This task may be accomplished with prune.
 `i1 : R = QQ[x,y];` ```i2 : I = ideal vars R o2 = ideal (x, y) o2 : Ideal of R``` ```i3 : M = image vars R o3 = image | x y | 1 o3 : R-module, submodule of R``` ```i4 : N = prune M o4 = cokernel {1} | -y | {1} | x | 2 o4 : R-module, quotient of R```
The isomorphism between them may be found under the key pruningMap.
 ```i5 : f = N.cache.pruningMap o5 = {1} | 1 0 | {1} | 0 1 | o5 : Matrix``` ```i6 : isIsomorphism f o6 = true``` ```i7 : f^-1 o7 = {1} | 1 0 | {1} | 0 1 | o7 : Matrix```
The matrix form of f looks nondescript, but the map knows its source and target
 ```i8 : source f o8 = cokernel {1} | -y | {1} | x | 2 o8 : R-module, quotient of R``` ```i9 : target f o9 = image | x y | 1 o9 : R-module, submodule of R```
It's a 2 by 2 matrix because M and N are both represented as modules with two generators.

Functions for finding related modules:

• ambient -- ambient free module of a subquotient, or ambient ring
• cover -- get the covering free module
• super -- get the ambient module
 ```i10 : super M 1 o10 = R o10 : R-module, free``` ```i11 : cover N 2 o11 = R o11 : R-module, free, degrees {2:1}```
Some simple operations on modules:
 ```i12 : M ++ N o12 = subquotient ({0} | x y 0 0 |, {0} | 0 |) {1} | 0 0 1 0 | {1} | -y | {1} | 0 0 0 1 | {1} | x | 3 o12 : R-module, subquotient of R``` ```i13 : M ** N o13 = cokernel {2} | -y 0 -y 0 | {2} | x 0 0 -y | {2} | 0 -y x 0 | {2} | 0 x 0 x | 4 o13 : R-module, quotient of R```
Ideals and modules behave differently when making powers:
 ```i14 : M^3 o14 = image | x y 0 0 0 0 | | 0 0 x y 0 0 | | 0 0 0 0 x y | 3 o14 : R-module, submodule of R``` ```i15 : I^3 3 2 2 3 o15 = ideal (x , x y, x*y , y ) o15 : Ideal of R```