HOMOLOGY OF $GL_3(F)$ FOR INFINITE FIELD F

B. MIRZAI

ABSTRACT. The homology of $GL_3(F)$ with coefficients in \mathbb{Z} and $\mathbb{Z}\left[\frac{1}{2}\right]$ is studied, where F is an infinite field. The main theorem states that the natural map $H_3(GL_3(F), \mathbb{Z}[\frac{1}{2}]) \to H_3(GL_3(F), \mathbb{Z}[\frac{1}{2}])$ is injective. Using this we will study the indecomposable part of $K_3(F)$.

1. INTRODUCTION

The Hurewicz theorem relates homotopy groups to homology groups, which are much easier to calculate. This in turn provides a homomorphism from the Quillen K_n-group of a field F to the n-th integral homology of stable group $GL(F)$, $h_n : K_n(F) \to H_n(GL(F), \mathbb{Z})$. One of the approaches to investigate these groups is by means of the homology stability.

Suslin’s stability theorem states that for an infinite field F the natural map $H_i(GL_n(F), \mathbb{Z}) \to H_i(GL(F), \mathbb{Z})$ is bijective if $n \geq i$ [8]. In [8], Suslin constructed a map from $H_n(GL_n(F), \mathbb{Z})$ to Milnor’s K_n-group $K^M_n(F)$ such that the sequence

$$H_n(GL_{n-1}(F), \mathbb{Z}) \to H_n(GL_n(F), \mathbb{Z}) \to K^M_n(F) \to 0, \quad (1)$$

is exact. Combining these two results he constructed a map from $K_n(F)$ to $K^M_n(F)$ such that the composite homomorphism

$$K^M_n(F) \to K_n(F) \to K^M_n(F)$$

coincides with the multiplication by $(-1)^{n-1}(n-1)!$ [8, Sec. 4].

In the case of $n < i$, Suslin leaves it as a conjecture that for any infinite field F the natural homomorphism

$$H_i(\text{inc}) : H_i(GL_n(F), \mathbb{Q}) \to H_i(GL(F), \mathbb{Q})$$

is injective. This conjecture is easy if $i = 1, 2$. For $i = 3$ the conjecture was proved positively by Elbaz-Vincent [3].

One even suspects that this injectivity would be true not only “rationally” but in a stronger form, namely,

Conjecture 1.1. For any infinite field F, the homomorphism of homology groups

$$H_n(\text{inc}) : H_n(GL_{n-1}(F), \mathbb{Z}\left[\frac{1}{(n-1)!}\right]) \to H_n(GL_n(F), \mathbb{Z}\left[\frac{1}{(n-1)!}\right])$$

is injective.
This conjecture is trivial if $n = 1$. It is true for $n = 2$ due to the decomposition $H_2(GL_2(F), \mathbb{Z}) = H_2(GL_1(F), \mathbb{Z}) \oplus K^M_2(F)$. The proof of this conjecture for $n = 3$ is the main goal of this paper (Theorem 5.2).

Combining the main result with (1), one obtains the following split exact sequence

$$0 \to H_3(GL_2(F), \mathbb{Z}[\frac{1}{2}]) \to H_3(GL_3(F), \mathbb{Z}[\frac{1}{2}]) \to K^M_3(F) \otimes \mathbb{Z}[\frac{1}{2}] \to 0.$$

We will give an explicit splitting map $K^M_3(F) \otimes \mathbb{Z}[\frac{1}{2}] \to H_3(GL_3(F), \mathbb{Z}[\frac{1}{2}])$. Applying these results we will prove that

$$K_3(F)_{\text{ind}} \otimes \mathbb{Z}[\frac{1}{2}] \cong H_0(F^*, H_3(SL_2(F), \mathbb{Z}[\frac{1}{2}]),$$

where $K_3(F)_{\text{ind}} = \text{coker}(K^M_3(F) \to K_3(F))$ is the indecomposable part of $K_3(F)$.

Our general strategy will be the same as in [3]. We will introduce some spectral sequences similar to ones in [3], but smaller and still big enough to do some computation. Our result will come out of analyzing these spectral sequences.

As a result of our computation, we shall prove that the complex

$$H_3(F^{*2} \times GL_1(F), \mathbb{Z}) \xrightarrow{\beta_1^{(3)}} H_3(F^* \times GL_2(F), \mathbb{Z}) \xrightarrow{\beta_2^{(3)}} H_3(GL_3(F), \mathbb{Z}) \to 0$$

is exact, where $\beta_1^{(3)} = H_3(\text{inc})$ and $\beta_2^{(3)} = H_3(\alpha_{1,2}) - H_3(\alpha_{2,2})$, $\alpha_{1,2} : F^{*2} \times GL_1(F) \to F^* \times GL_2(F)$, $\text{diag}(a, b, c) \mapsto \text{diag}(b, a, c)$ and $\alpha_{2,2} = \text{inc} : F^{*2} \times GL_1(F) \to F^* \times GL_2(F)$. Using this we shall prove that if F is an algebraically closed field, the so called classical Bloch group $\mathfrak{g}^3(F)_{cl}$ is divisible (Proposition 3.7). This gives a positive answer to conjecture 0.2 in [11] for $n = 3$ (Remark 2).

In the last section we will study the map $H_n(\text{inc}) : H_n(GL_{n-1}(F), k) \to H_n(GL_n(F), k)$ when k is a field and $(n - 1)! \in k^*$.

Here we establish some notation. In this note by $H_i(G)$ we mean the i-th integral homology of the group G. We use the bar resolution to define the homology of a group [1, Chap. 1, Section 5]. Define $c(g_1, g_2, \ldots, g_n) = \sum_{\sigma \in \Sigma_n} \text{sgn}(\sigma) \sigma(g_{\sigma(1)}) \sigma(g_{\sigma(2)}) \cdots \sigma(g_{\sigma(n)}) \in H_n(G)$, where the elements $g_i \in G$ commute with each other and Σ_n is the symmetric group of degree n. By G_n we mean the general linear group $GL_n(F)$, where F is an infinite field. Note that G_0 is the trivial group and $G_1 = F^*$. The i-th factor of F^{*m} is denoted by F^*_i.

I would like to thank W. van der Kallen for his interest in this work and for his valuable comments.

2. THE SPECTRAL SEQUENCES

Let $C_i(F^m)$ and $D_i(F^m)$ be the free abelian groups with a basis consisting of $(\langle v_0 \rangle, \ldots, \langle v_i \rangle)$ and $(\langle w_0 \rangle, \ldots, \langle w_i \rangle)$ respectively, where every $\min\{l+1, n\}$ of $v_i \in F^m$ and every $\min\{l+1, n-1\}$ of $w_i \in F^m$ are linearly independent. By
\langle v_i \rangle$ we mean the line passing through vectors v_i and 0. Let $\partial_0 : C_0(F^n) \to C_{-1}(F^n) := \mathbb{Z}, \sum_i n_i(\langle v_i \rangle) \mapsto \sum_i n_i$ and $\partial_l = \sum_{i=0}^l (-1)^i d_i : C_i(F^n) \to C_{l-1}(F^n)$, $l \geq 1$, where
\[d_i((\langle v_0 \rangle, \ldots, \langle v_i \rangle)) = (\langle v_0 \rangle, \ldots, \langle v_i \rangle, \ldots, \langle v_i \rangle). \]

Define the differential $\tilde{\partial}_l = \sum_{i=0}^l (-1)^i \tilde{d}_i : D_l(F^n) \to D_{l-1}(F^n)$ similar to ∂_l. Set $L_0 = \mathbb{Z}$, $M_0 = \mathbb{Z}$, $L_l = C_{l-1}(F^n)$ and $M_l = D_{l-1}(F^n)$, $l \geq 1$. It is easy to see that the complexes
\[L_* : \quad 0 \leftarrow L_0 \leftarrow L_1 \leftarrow \cdots \leftarrow L_l \leftarrow \cdots \]
\[M_* : \quad 0 \leftarrow M_0 \leftarrow M_1 \leftarrow \cdots \leftarrow M_l \leftarrow \cdots \]
are exact. Take a G_n-resolution $P_* \to \mathbb{Z}$ of \mathbb{Z} with trivial G_n-action. From the double complexes $L_* \otimes_{G_n} P_*$ and $M_* \otimes_{G_n} P_*$ we obtain two first quadrant spectral sequences converging to zero with
\[E^1_{p,q}(n) = \begin{cases} H_q(F^{*p} \times G_{n-p}) & \text{if } 0 \leq p \leq n, \\ H_q(G_n, C_{p-1}(F^n)) & \text{if } p \geq n + 1, \end{cases} \]
\[\tilde{E}^1_{p,q}(n) = \begin{cases} H_q(F^{*p} \times G_{n-p}) & \text{if } 0 \leq p \leq n - 1, \\ H_q(G_n, D_{p-1}(F^n)) & \text{if } p \geq n. \end{cases} \]

For $1 \leq p \leq n$, and $q \geq 0$ the differential $d^{p,n}_{p,0}(n)$ equals $\sum_{i=1}^p (-1)^{i+1} H_q(\alpha_{i,p})$, where $\alpha_{i,p} : F^{*p} \times G_{n-p} \to F^{*p-1} \times G_{n-p+1}$, diag$(a_1, \ldots, a_p, A) \mapsto \text{diag}(a_1, \ldots, \alpha_i, \ldots, a_p \left(\begin{array}{cc} a_i & 0 \\ 0 & A \end{array} \right))$. In particular for
\[0 \leq p \leq n, \quad d^{p,n}_{p,0}(n) = \begin{cases} \text{id}_\mathbb{Z} & \text{if } p \text{ is odd} \\ 0 & \text{if } p \text{ is even}, \end{cases} \]
so $E^2_{n,0}(n) = 0$ for $p \leq n - 1$. It is also easy to see that $E^2_{n,0}(n) = E^2_{n+1,0}(n) = 0$. See the proof of [5, Thm. 3.5] for more details.

In this note we will use $\tilde{E}^i_{p,q}(n)$ only for $n = 3$, so from now on by $\tilde{E}^i_{p,q}$ we mean $\tilde{E}^i_{p,q}(3)$. We describe $\tilde{E}^1_{p,q}$ for $p = 3, 4$. Let $w_1 = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_3 \rangle), w_2 = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 \rangle) \in D_2(F^3)$ and $u_1, \ldots, u_5, u_{6, a} \in D_3(F^3), a \in F^* - \{1\}$, where
\[u_1 = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_3 \rangle, \langle e_1 + e_2 + e_3 \rangle), \quad u_2 = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_3 \rangle, \langle e_1 + e_2 \rangle), \]
\[u_3 = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_3 \rangle, \langle e_2 + e_3 \rangle), \quad u_4 = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_3 \rangle, \langle e_1 + e_3 \rangle), \]
\[u_5 = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 \rangle, \langle e_3 \rangle), \quad u_{6,a} = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 \rangle, \langle e_1 + ae_2 \rangle). \]

By the Shapiro lemma $\tilde{E}^1_{3, q} = H_q(\text{Stab}_{G_3}(w_1)) \oplus H_q(\text{Stab}_{G_3}(w_2))$ and $\tilde{E}^1_{4, q} = \bigoplus_{j=1}^5 H_q(\text{Stab}_{G_3}(u_j)) \oplus \bigoplus_{a \in F^* - \{1\}} H_q(\text{Stab}_{G_3}(u_{6,a}))$. Applying the
so called center killer lemma [8, Thm. 1.9], one gets

\[\hat{E}^{3}_{q} = H_{q}(F^{*}I_{2} \times F^{*}) \oplus H_{q}(F^{*}I_{2} \times F^{*}) \]

\[\hat{E}^{q}_{4} = H_{q}(F^{*}I_{3}) \oplus H_{q}(F^{*}I_{2} \times F^{*}) \oplus H_{q}(F^{*} \times F^{*}I_{2}) \oplus H_{q}(T) \]

\[\oplus H_{q}(F^{*}I_{2} \times F^{*}) \oplus \bigoplus_{a \in F^{*} \setminus \{1\}} H_{q}(F^{*}I_{2} \times F^{*}) \]

where \(T = \{(a, b, a) \in F^{3} : a, b \in F^{*}\} \). Note that \(\hat{d}_{p,q}^{1} = d_{p,q}^{1}(3) \) for \(p = 1, 2 \),
\(\hat{d}_{3,q}^{1}(F^{*}I_{3}) = d_{3,q}^{1}(3) \) and \(\hat{d}_{3,q}^{1}(F^{*}I_{2} \times F^{*}) = H_{q}(\text{inc}) \), where \(\text{inc} : F^{*}I_{2} \times F^{*} \to F^{*} \to F^{*} \).

3. Some computation

Lemma 3.1. The group \(\hat{E}^{2}_{p,0} \) is trivial for \(0 \leq p \leq 5 \).

Proof. Triviality of \(\hat{E}^{2}_{p,0} \) is easy for \(0 \leq p \leq 2 \). To prove the triviality of \(\hat{E}^{2}_{3,0} \), note that \(\hat{E}^{1}_{3,0} = Z, \hat{E}^{1}_{3,0} = Z \oplus Z \) and \(\hat{d}_{3,0}^{1}(n_{1}, n_{2}) = n_{1} + n_{2} \), so
if \((n_{1}, n_{2}) \in \ker(\hat{d}_{3,0}^{1}) \), then \(n_{2} = -n_{1} \). It is easy to see that this sits in
\(\text{im}(\hat{d}_{3,0}^{1}) \). We prove the triviality of \(\hat{E}^{2}_{5,0} \). Triviality of \(\hat{E}^{2}_{4,0} \) is similar but
much easier. This proof is just taken from [3, Sec. 1.3.3].

Triviality of \(\hat{E}^{2}_{5,0} \). The proof will be in four steps;

Step 1. The sequence \(0 \to C_{*}(F^{3} \otimes G_{3}) \to D_{*}(F^{3} \otimes G_{3}) \to Q_{3}(F^{3}) \to 0 \) is exact, where \(Q_{*}(F^{3}) := D_{*}(F^{3})/C_{*}(F^{3}) \).

Step 2. The group \(H_{*}(Q_{*}(F^{3}) \otimes G_{3}) \) is trivial.

Step 3. The map induced in homology by \(C_{*}(F^{3}) \otimes G_{3} \to D_{*}(F^{3}) \otimes G_{3} \) is zero in degree 4.

Step 4. The group \(\hat{E}^{2}_{5,0} \) is trivial.

Proof of step 1. For \(i \geq -1 \), \(D_{i}(F^{3}) \simeq C_{i}(F^{3}) \oplus Q_{i}(F^{3}) \). This decomposition is compatible with the action of \(G_{3} \), so we get an exact sequence of
\(\mathbb{Z}[G_{3}] \)-modules

\[0 \to C_{i}(F^{3}) \to D_{i}(F^{3}) \to Q_{i}(F^{3}) \to 0 \]

which splits as a sequence of \(\mathbb{Z}[G_{3}] \)-modules. One can easily deduce the
desired exact sequence from this. Note that this exact sequence does not
split as complexes.

Proof of step 2. The complex \(Q_{*}(F^{3}) \) induces a spectral sequence

\[\hat{E}^{1}_{p,q} = \begin{cases} 0 & \text{if } 0 \leq p \leq 2 \\ H_{q}(G_{3}, Q_{p-1}(F^{3})) & \text{if } p \geq 3 \end{cases} \]

which converges to zero. To prove the claim it is sufficient to prove that
\(\hat{E}^{2}_{5,0} = 0 \) and to prove this it is sufficient to prove that \(\hat{E}^{2}_{3,1} = 0 \). One can see that \(\hat{E}^{1}_{3,1} = H_{1}(F^{*}I_{2} \times F^{*}) \). If \(w = (e_{1}, e_{2}, e_{3}, e_{1} + e_{2}) \in Q_{3}(F^{3}) \), then \(H_{1}(\text{Stab}_{G_{3}}(w)) \simeq H_{1}(F^{*}I_{2} \times F^{*}) \) is a summand of \(\hat{E}^{1}_{4,1} \) and \(\hat{d}_{4,1}^{1} : H_{1}(\text{Stab}_{G_{3}}(w)) \to \hat{E}^{1}_{3,1} \) is an isomorphism. So \(\hat{d}_{4,1}^{1} \) is surjective and
therefore $\tilde{E}_{3,1}^2 = 0$.

Proof of step 3. Consider the following commutative diagram

$$
\begin{array}{c}
C_5(F^3) \otimes_{G_3} \mathbb{Z} \rightarrow C_4(F^3) \otimes_{G_3} \mathbb{Z} \rightarrow C_3(F^3) \otimes_{G_3} \mathbb{Z} \\
D_5(F^3) \otimes_{G_3} \mathbb{Z} \rightarrow D_4(F^3) \otimes_{G_3} \mathbb{Z} \rightarrow D_3(F^3) \otimes_{G_3} \mathbb{Z}.
\end{array}
$$

The generators of $C_4(F^3) \otimes_{G_3} \mathbb{Z}$ are of the form $x_{a,b} \otimes 1$, where $x_{a,b} = \langle \langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + ae_2 + be_3 \rangle, \langle e_3 \rangle, \langle e_1 + e_2 \rangle \rangle$, $a, b \in F^* - \{1\}$ and $a \neq b$.

Since $C_3(F^3) \otimes_{G_3} \mathbb{Z} = \mathbb{Z}$, $(x_{a,b} - x_{c,d}) \otimes 1 \in \ker(\partial_4 \otimes 1)$ and the elements of this form generate $\ker(\partial_4 \otimes 1)$. Hence to prove this step it is sufficient to prove that $(x_{a,b} - x_{c,d}) \otimes 1 \in \im(\partial_5 \otimes 1)$.

Set $w_{a,b} = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + ae_2 + be_3 \rangle, \langle e_3 \rangle, \langle e_1 + e_2 \rangle, \langle e_1 + ae_2 \rangle) \in D_5(F^3)$, where $a, b \in F^* - \{1\}$ and $a \neq b$. Let g, g', and g'' be the matrices

$$
\begin{pmatrix}
0 & a^{-1} & 0 \\
-1 & 1 + a^{-1} & 0 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 & -b^{-1} \\
0 & 1 & -ab^{-1} \\
0 & 0 & b^{-1}
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
0 & a^{-1} & 0 \\
0 & 0 & b^{-1}
\end{pmatrix},
$$

respectively, then

$$g(\tilde{a}_1(w_{a,b})) = \tilde{a}_0(w_{a,b}), \quad g'(\tilde{a}_3(w_{a,b})) = \tilde{a}_2(w_{a,b}), \quad g''(\tilde{a}_4(w_{a,b})) = v_{1,1},$$

and so $(\tilde{\partial}_5 \otimes 1)(w_{a,b} \otimes 1) = (v_{1,1} - v_{a,b}) \otimes 1$, where

$$v_{a,b} = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + ae_2 + be_3 \rangle, \langle e_3 \rangle, \langle e_1 + e_2 \rangle \rangle).$$

Note that the elements of the form $(gw - w) \otimes 1$ are zero in $D_4 \otimes_{G_3} \mathbb{Z}$. If

$$u_{a,b} = (\langle e_3 \rangle, \langle e_1 + ae_2 + be_3 \rangle, \langle e_1 + e_2 \rangle, \langle e_1 + ae_2 \rangle \rangle),$$

$$u'_{a,b} = (\langle e_1 + ae_2 + be_3 \rangle, \langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 \rangle, \langle e_1 + ae_2 \rangle \rangle),$$

where $a, b \in F^* - \{1\}$, then

$$gu_{a,b} = (\langle e_3 \rangle, \langle e_1 + ae_2 + be_3 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 \rangle, \langle e_1 + ae_2 \rangle \rangle),$$

$$g'u'_{a,b} = (\langle e_3 \rangle, \langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 \rangle, \langle e_1 + ae_2 \rangle \rangle).$$

So if $a, b, c, d \in F^* - \{1\}$, $a \neq b, c \neq d$, then $(\tilde{\partial}_5 \otimes 1)((z_{a,b} - z_{c,d}) \otimes 1) = (t_{c,d} - t_{a,b}) \otimes 1$, where

$$z_{a,b} = (\langle e_3 \rangle, \langle e_1 + ae_2 + be_3 \rangle, \langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 \rangle, \langle e_1 + ae_2 \rangle \rangle),$$

$$t_{a,b} = (\langle e_3 \rangle, \langle e_1 + ae_2 + be_3 \rangle, \langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 \rangle \rangle).$$

If g_1, g_2 and g_3 are the matrices

$$
\begin{pmatrix}
-1 & 0 & 1 \\
-1 & 0 & 0 \\
-1 & 1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & -1 & 1 \\
0 & -1 & 0 \\
1 & -1 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & -1
\end{pmatrix},
$$
respectively, then \(g_1(\tilde{d}_0(y_{a,b})) = t \frac{1}{1-s}, \frac{1-s}{s} \), \(g_2(\tilde{d}_1(y_{a,b})) = t \frac{s-1}{s}, \frac{1-s}{s} \) and \(g_3(\tilde{d}_3(y_{a,b})) = v_{a-b}, \frac{1-s}{s} \), where
\[
y_{a,b} = (\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + ae_2 + be_3 \rangle, \langle e_3 \rangle, \langle e_1 + e_2 + e_3 \rangle, \langle e_1 + e_2 \rangle).
\]
By an easy computation
\[
(\tilde{d}_5 \otimes 1)(y_{a,b} \otimes 1) = t \frac{1}{1-s}, \frac{1-s}{s} \otimes 1 - t \frac{s-1}{s}, \frac{1-s}{s} \otimes 1 + v_{a-1} \otimes 1
- v_{a-b}, \frac{1-s}{s} \otimes 1 + v_{a,b} \otimes 1 - x_{a,b} \otimes 1.
\]
Now it is easy to see that \((x_{a,b} - x_{a,d}) \otimes 1 \in (\tilde{d}_5 \otimes 1)(D_5(F^3) \otimes_G \mathbb{Z}) \). This completes the proof of step 3.

Proof of Step 4. Applying the homology long exact sequence to the short exact sequence obtained in the first step, we get the exact sequence
\[
H_4(C_*(F^3) \otimes_G \mathbb{Z}) \to H_4(D_*(F^3) \otimes_G \mathbb{Z}) \to H_4(Q_*(F^3) \otimes_G \mathbb{Z}).
\]
By steps 2 and 3, \(H_4(D_*(F^3) \otimes_G \mathbb{Z}) = 0 \), but \(\tilde{E}^2_{5,0} = H_4(D_*(F^3) \otimes_G \mathbb{Z}) \). This completes the proof of the triviality of \(\tilde{E}^2_{5,0} \). \(\square \)

Lemma 3.2. The group \(\tilde{E}^2_{p,1} \) is trivial for \(0 \leq p \leq 4 \).

Proof. Triviality of \(\tilde{E}^2_{p,1}, p = 0, 1 \), is a result of lemma 3.1 and the fact that the spectral sequence converges to zero (one can also prove this directly).

If \((a, b, c) \in \ker(\tilde{d}_{1,1}^2), a, b, c \in H_1(F^*)\), then \(a = b \). It is easy to see that this element sits in \(\text{im}(\tilde{d}_{1,1}^3) \). Let \(x = (x_1, \ldots, x_5, (x_{6a})) \in \tilde{E}_{4,1}^1 \), where \(x_2 = (a_2, a_2, b_2), x_3 = (a_3, b_3, b_3), x_4 = (a_4, b_4, a_4), x_5 = (a_5, a_5, b_5), a_i, b_i \in H_1(F^*) \). By a direct calculation \(\tilde{d}_{4,1}^1(x) = (z_1, z_2) \), where
\[
z_1 = -(a_2, a_2, b_2) - (a_3, b_3, b_3) + (b_4, a_4, a_4) + (a_5, a_5, b_5),
z_2 = (a_2, a_2, b_2) + (b_3, b_3, a_3) - (a_4, a_4, b_4) - (a_5, a_5, b_5).
\]
If \(y = ((a, b, c), (d, d, e)) \in \ker(\tilde{d}_{1,1}^3), a, b, c, d, e \in H_1(F^*) \), then \(b + d = a - b + c + e = 0 \). Let \(x_2 = (-b, b, -c), x_3 = (-a + b, 0, 0) \) and set \(x' = (0, x_2, x_3, 0, 0, 0) \in \tilde{E}_{4,1}^1 \), then \(y = \tilde{d}_{4,1}^1(x') \).

To prove the triviality of \(\tilde{E}_{4,1}^2 \); let \(x \in \ker(\tilde{d}_{4,1}^1) \) and set \(w_1 = ((\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 \rangle, \langle e_3 + e_4 \rangle), w_2 = ((\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 \rangle, \langle e_3 + e_4 \rangle), w_3 = ((\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 + e_3 \rangle, \langle e_2 + e_3 \rangle), w_4 = ((\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 + e_3 \rangle, \langle e_1 + e_2 \rangle, \langle e_1 + e_2 + e_3 \rangle), w_5 = ((\langle e_1 \rangle, \langle e_2 \rangle, \langle e_1 + e_2 + e_3 \rangle, \langle e_1 + e_2 + e_3 \rangle, \langle e_1 + e_2 + e_3 \rangle), a, b \in F^* - \{1\} \) and \(a \neq b \). The groups \(T_i = H_1(\text{Stab}_{G_1}(w_i)), i = 0, 1, 2, 3, 4 \) and \(T_4 = \bigoplus_{a \in F^* - \{1\}} H_1(\text{Stab}_{G_1}(w_{4a})) \) are summands of \(\tilde{E}_{5,1}^1 \). Note that \(T_1 = H_1(F^* I_2 \times F^*), T_2 = H_1(T), T_3 = T_5 = H_1(F^* I_3) \) and \(T_4 = \bigoplus_{a \in F^* - \{1\}} H_1(F^* I_2 \times F^*). \) The restriction of \(\tilde{d}_{5,1}^1 \) on these summands is
as follow;
\[
\begin{align*}
\bar{d}_{5,1}^2 v_1 & = (0, (c_1, c_1, d_1), 0, (c_1, c_1, d_1), - (c_1, c_1, d_1)), \\
\bar{d}_{5,1}^2 v_2 & = (0, 0, (d_2, c_2, c_2), (c_2, d_2, c_2), 0, (c_2, d_2, c_2)), \\
\bar{d}_{5,1}^2 T_5 & = ((c_3, c_3, c_3), (c_3, c_3, c_3), -(c_3, c_3, c_3), 0, 0, 0), \\
\bar{d}_{5,1}^2 T_4 & = (0, 0, 0, 0, 0, (c_4, c_4, d_4)), \\
\bar{d}_{5,1} T_5 & = \text{id}_{H_1(F^* \cdot I_5)}.
\end{align*}
\]

Let \(z_1 = (a_5, a_5, b_5) \in T_1 \) and \(z_2 = (a_4, b_4, a_4) \in T_2 \), then \(x - \bar{d}_{5,1}^2(z_1 + z_2) = (x', x', x', 0, 0, (x'_6, a)) \), so we can assume that \(x_4 = x_5 = 0 \). An easy calculation shows that \(x_2 = b_2 = -a_3 = -b_3 \). If \(z_3 = (a_2, a_2, a_2) \in T_3 \), then \(x - \bar{d}_{5,1}^2(z_3) = (x'_1, 0, 0, 0, 0, (x'_6, a)) \). Again we can assume that \(x_2 = x_3 = 0 \). If \(z_4 = (x_6, a) \in T_4 \), then \(x - \bar{d}_{5,1}^2(z_4) = (x'_1, 0, 0, 0, 0, 0) \). Once more we can assume that \(x_6 = 0 \). These reduce \(x \) to an element of the form \((x_1, 0, 0, 0, 0, 0) \). If \(x_1 \in T_5 \), then \(\bar{d}_{5,1}^2(x_1) = (x_1, 0, 0, 0, 0, 0) \). This completes the triviality of \(\tilde{E}^2_{4,1} \). \hfill \Box

Lemma 3.3. The group \(\tilde{E}^2_{p,2} \) is trivial for \(0 \leq p \leq 3 \).

Proof. Triviality of \(\tilde{E}^2_{0,2} \) and \(\tilde{E}^2_{1,2} \) is a result of lemmas 3.1, 3.2 and the fact that the spectral sequence converges to zero. Let \(\tilde{E}_{1,2}^1 = H_2(F^* \times G_2) = H_2(F^* \otimes H_2(G_2) \otimes H_1(F^*) \otimes H_1(G_2), \tilde{E}_{1,2}^2 = H_2(F^* \otimes H_1(F^*) \otimes H_1(G_2), \tilde{E}_{2,2}^1 = \bigoplus_{i=1}^6 T_i \) and \(\tilde{E}_{3,2}^2 = H_3(F^* \otimes H_2(F^* \otimes G_2) \otimes H_1(F^*) \otimes H_1(G_2), \tilde{E}_{3,2}^3 = \bigoplus_{i=1}^9 T_i \), where \(T_i = H_2(F^*) \) for \(i = 1, 2, 3 \), \(T_4 = H_1(F_2^*) \otimes H_1(F_3^*), T_5 = H_1(F_1^*) \otimes H_1(F_3^*), T_6 = H_1(F_2^*) \otimes H_1(F_3^*), T_7 = H_2(F_1^* \otimes F_2^*), T_8 = H_2(F_1^* \otimes F_2^*), T_9 = H_1(F_2^* \otimes F_1^* \otimes F^*), \) and \(T_9 = H_1(F_2^* \otimes F_1^*) \otimes H_1(F_2^* \otimes F^*) \). If \(y = (y_1, y_2, y_3, \sum r \otimes s, \sum t \otimes u, \sum v \otimes w) \in \tilde{E}_{1,2}^1 \) and \(x = (x_1, x_2, x_3, \sum a \otimes b, \sum c \otimes d, \sum e \otimes f, x_7, x_8, \sum g \otimes h) \in \tilde{E}_{3,2}^2 \), then \(\bar{d}_{3,2}^1(y) = (h_1, h_2, h_3) \), where \(h_1 = -y_1 + y_2, h_3 = -\sum s \otimes \text{diag}(1, r) - \sum r \otimes \text{diag}(1, s) - \sum t \otimes \text{diag}(1, u) + \sum v \otimes \text{diag}(1, w) \) and \(\bar{d}_{3,2}^1(z_1 \otimes i_{6,0}, \ldots, z_9 \otimes f, z_5 = -\sum b \otimes a - \sum a \otimes b + \sum c \otimes d + \sum g \otimes h, z_6 = -\sum d \otimes c + \sum f \otimes e + \sum e \otimes f + \sum g \otimes h). \)

If \(y \in \text{ker}(\bar{d}_{3,2}^1) \), then \(y_1 = y_2 \) and \(h_3 = 0 \). By \(H_1(F^*) \otimes H_1(G_2) \cong H_1(F^*) \otimes H_1(G_2) \) and \(h_3 = 0 \) we have \(-\sum s \otimes r - \sum r \otimes s - \sum t \otimes u + \sum v \otimes w = 0 \). If \(z = (y_1, y_1, y_3, 0, \sum t \otimes u, \sum r \otimes s + \sum t \otimes u, 0, 0, 0) \in \tilde{E}_{3,2}^1 \), then \(y = \bar{d}_{3,2}^1(z) \) and therefore \(\tilde{E}_{2,2}^2 = 0 \).

Let \(\bar{d}_{3,2}^1(x) = 0 \). Consider the summands \(S_2 = H_2(\text{Stab}_{G_2}(u_2)) = H_2(F^* \otimes I_2^* \times F^*) \) and \(S_3 = H_2(\text{Stab}_{G_3}(u_3)) = H_2(F^* \times F^* \otimes I_2^* \times F^* \otimes I_2^*) \) of \(\tilde{E}_{4,2}^1 \). Then \(S_i \simeq H_2(F^* \otimes H_2(F^*) \otimes H_2(F^*) \otimes H_1(F^*) \otimes H_1(F^*) \) and by a direct calculation
\[
\begin{align*}
\bar{d}_{4,2}^1 s_2((y_1, y_2, s \otimes t)) &= (-y_1, -y_1, -y_2, 0, -s \otimes t, -s \otimes t, y_1, y_2, s \otimes t), \\
\bar{d}_{4,2}^1 s_3((u_1, u_2, p \otimes q)) &= (-u_1, -u_2, -u_2, -p \otimes q, -p \otimes q, 0, u_2, u_1, -q \otimes p).
\end{align*}
\]
Choose $z_2' = (-x_2, -x_3, -\sum e \otimes f) \in S_2$ and $z_3' = (x_3 + x_8, 0, -\sum a \otimes b) \in S_3$. Then $x = d_{1,2}^3(z_2' + z_3')$ and therefore $\tilde{E}_{3,2}^2 = 0$.

Lemma 3.4. The groups $\tilde{E}_{0,3}^2$, $\tilde{E}_{1,3}^2$ and $\tilde{E}_{0,4}^2$ are trivial.

Proof. These follow from 3.1, 3.2 and 3.3 and the fact that the spectral sequence converges to zero.

Proposition 3.5. (i) The complex

$$H_2(F^* \times G_0) \xrightarrow{d_{1,2}^3} H_2(F^* \times G_1) \xrightarrow{d_{1,3}^3} H_2(F^* \times G_2) \xrightarrow{d_{1,3}^3} H_2(F^* \times G_3) \to 0$$

is exact, where $d_{1,2}^3(3) = H_2(\alpha_{1,2}) - H_2(\alpha_{2,3}) + H_2(\alpha_{3,3})$, $d_{1,2}^3(3) = H_2(\alpha_{1,2}) - H_2(\alpha_{2,3})$ and $d_{1,2}^3(3) = H_2(\text{inc})$.

(ii) The complex

$$H_3(F^* \times G_1) \xrightarrow{d_{1,3}^3} H_3(F^* \times G_2) \xrightarrow{d_{1,3}^3} H_3(F^* \times G_3) \to 0$$

is exact, where $d_{1,3}^3(3) = H_3(\alpha_{1,2}) - H_3(\alpha_{2,3})$ and $d_{1,3}^3(3) = H_3(\text{inc})$.

(iii) (stability) The map $H_3(\text{inc}) : H_2(G_2) \to H_2(G_3)$ is an isomorphism and the map $H_3(\text{inc}) : H_3(F^* \times G_2) \to H_3(F^* \times G_3)$ is surjective.

Proof. The only case that remains to prove is that $H_2(G_2) \to H_2(G_3)$ is an isomorphism. The proof is similar to the proof of [5, lem. 4.2] using (i).

Remark 1. (i) By a similar approach as the above proposition one can prove that $H_2(G_n) \to H_2(G_{n+1})$ is an isomorphism for $n \geq 3$. For this one should work with $E^1_{p,q}(n)$, $n \geq 3$. This combined with 3.5 will prove the homology stability for the functor H_2.

(ii) A similar result as 3.5(ii) is not true for $n = 2$, that is the complex

$$H_2(F^* \times G_0) \xrightarrow{d_{1,2}^3(2)} H_2(F^* \times G_1) \xrightarrow{d_{1,2}^3(2)} H_2(G_2) \to 0$$

is not exact. In fact

$$\ker(d_{1,2}^3(2))/\text{im}(d_{1,2}^3(2)) \simeq \langle x \wedge (x - 1) - x \otimes (x - 1) : x \in F^* \rangle$$

is a subset of $H_2(F^*) \oplus (F^* \otimes F^*)$, where $(F^* \otimes F^*) = (F^* \otimes F^*)/\langle a \otimes b + b \otimes a : a, b \in F^* \rangle$. To prove this let $Q(F)$ be the free abelian group with the basis $\{[x] : x \in F^* - \{1\}\}$. Denote by $p(F)$ the factor group of $Q(F)$ by the subgroup generated by the elements of the form $[x] - [y] + [y/x] - [(1 - x^{-1})/(1 - y^{-1})] + [(1 - x)/(1 - y)]$. The homomorphism $\psi : Q(F) \to F^* \otimes F^*$, $[x] \mapsto x \otimes (x - 1)$ induces a homomorphism $p(F) \to (F^* \otimes F^*)$, [9, 1.1]. By [9, 2.2], $E^2_{p,q}(2) = p(F)$ and $E^2_{p,q}(2)$ has the following form

$$
\begin{array}{cccc}
* & E^2_{2,0}(2) & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & p(F) & *
\end{array}
$$
An easy calculation shows that $E^2_{1,2}(2) \subseteq H_2(F^*) \oplus (F^* \otimes F^*)_\sigma$. By [9, 2,4] $d^3_{4,0}(2) : E^3_{4,0}(2) \rightarrow E^3_{1,2}(2)$ is defined by $d^3_{4,0}(2)([x]) = x \wedge (x - 1) - x \otimes (x - 1)$. Because the spectral sequence converges to zero we see that $d^3_{4,0}(2)$ is surjective and so $E^2_{1,2}(2)$ is generated by the elements of the form $x \wedge (x - 1) - x \otimes (x - 1) \in H_2(F^*) \oplus (F^* \otimes F^*)_\sigma$.

Following [11, Section 3] we define;

Definition 3.6. We call $\varrho^3(F)_{cl} := H(C_{n+2}(F^n)_{G_n} \rightarrow C_{n+1}(F^n)_{G_n} \rightarrow C_n(F^n)_{G_n})$ the n-th classical Bloch group.

It is well known that $\varrho^2(F)_{cl} \simeq p(F)$ [9, 1.1], where $p(F)$ is defined in remark 1.

Proposition 3.7. We have an isomorphism $\varrho^3(F)_{cl} \simeq F^*$. In particular if F is algebraically closed, then $\varrho^3(F)_{cl}$ is divisible.

Proof. Using 3.5 one sees that $E^2_{p,q} (3)$ is of the form

$$
\begin{array}{ccccccc}
* & * & & & & & \\
0 & 0 & * & * & 0 & * & \\
0 & 0 & 0 & * & 0 & * & \\
0 & 0 & 0 & F^* & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & \varrho^3(F)_{cl} & * \\
\end{array}
$$

From this we obtain the exact sequence

$$0 \rightarrow E^3_{0,0} \rightarrow \varrho^3(F)_{cl} \overset{d^3_{0,0}}{\rightarrow} F^* \rightarrow 0.
$$

Comparing $E^3_{0,0}(3)$ with $E^3_{0,0}(3)$ and applying lemma 3.4 one sees that $E^3_{0,0}(3) = 0$. Now it is easy to see that $E^3_{0,0}(3) = 0$. This proves the first part of the proposition. The second part follows from the fact that for an algebraically closed field F, F^* is divisible. \hfill \Box

Remark 2. From 3.7 and the existence of a surjective map $\varrho^3(F)_{cl} \rightarrow \varrho^3(F)$ [11, Prop. 3.11] we deduce that $\varrho^3(F)$ is divisible. See [11, 2.7] for the definition of $\varrho^3(F)$. This gives a positive answer to conjecture 0.2 in [11] for $n = 3$.

4. KÜNNETH THEOREM FOR $H_3(F^* \times F^*)$

The Künneth theorem claims that the group $H_n(F^* \times F^*)$, $n \geq 1$, sits in the following exact sequence

$$0 \rightarrow \bigoplus_{i+j=n} H_i(F^*) \otimes H_j(F^*) \rightarrow H_n(F^* \times F^*) \rightarrow \bigoplus_{i+j=n-1} \text{Tor}^2_{i+j}(H_i(F^*), H_j(F^*)) \rightarrow 0
$$

which splits. But most of the time this splitting is not canonical. Here we will see that if $n \leq 3$, then it splits canonically. This is clear for $n = 1$.
For $n = 2$ it follows from the fact that $\text{Tor}_1^F(H_i(F^*), H_j(F^*)) = 0$ if $(i, j) = (1, 0), (0, 1)$.

So let $n = 3$. If μ_F is the group of roots of unity of F, then $\mu_F = \lim_{n \to F} \mu_n, F$, where μ_n, F is the group of n-th roots of unity. By what we know about the homology of finite cyclic groups we obtain $H_2(\mu_F) = 0$. Hence the Künneth theorem for $H_3(\mu_F \times \mu_F)$ finds the following form

$$0 \rightarrow H_3(\mu_F) \oplus H_3(\mu_F) \rightarrow H_3(\mu_F \times \mu_F) \rightarrow \text{Tor}_1^F(\mu_F, \mu_F) \rightarrow 0.$$

Clearly $H_3(\mu_F) \oplus H_3(\mu_F) \rightarrow H_3(\mu_F \times \mu_F)$ is defined by $H_3(i_1) + H_3(i_2)$, where $i_k : \mu_F \rightarrow \mu_F \times \mu_F$ is the usual injection, $k = 1, 2$. Define the map $\beta : H_3(p_1) \oplus H_3(p_2) : H_3(\mu_F \times \mu_F) \rightarrow H_3(\mu_F) \oplus H_3(\mu_F)$, where $p_k : \mu_F \times \mu_F \rightarrow \mu_F$ is the usual projection, $k = 1, 2$. From $\alpha \circ \beta = \text{id}$ one deduce that the above exact sequence splits canonically. Thus we have the canonical decomposition

$$H_3(\mu_F \times \mu_F) = H_3(\mu_F) \oplus H_3(\mu_F) \oplus \text{Tor}_1^F(\mu_F, \mu_F).$$

We construct the splitting map $\text{Tor}_1^F(\mu_F, \mu_F) \rightarrow H_3(\mu_F \times \mu_F)$. The elements of $\text{Tor}_1^F(\mu_F, \mu_F) = \text{Tor}_1^F(H_1(\mu_F), H_1(\mu_F))$ are of the form $\langle \xi, n, [\xi] \rangle = \langle \langle \xi, n, [\xi] \rangle \rangle$ for some n, where ξ is an n-th root of unity in F [4, Chap. V, Section 6]. It is easy to see that $\partial_j \sum_{i=1}^n [\xi^i] = n[\xi]$ in $B_1(\mu_F)$. See [1, Chap. I, section 5] for the definition of ∂_2 and B_*. By [4, Chap. V, Prop. 10.6] the map $\phi : \text{Tor}_1^F(H_1(\mu_F), H_1(\mu_F)) \rightarrow H_3(B_* \mu_F \otimes B_* \mu_F)$ can be defined by

$$a := \langle [\xi], n, \langle [\xi] \rangle \rangle \mapsto \langle [\xi] \rangle \otimes \sum_{i=1}^n \langle [\xi^i] \rangle = \sum_{i=1}^n [\xi^i] \otimes [\xi].$$

Considering the isomorphism $B_* \mu_F \otimes B_* \mu_F \simeq B_*(\mu_F \times \mu_F)$ we have $\phi(a) = \chi(\xi) \in H_3(\mu_F \times \mu_F)$, where

$$\chi(\xi) := \sum_{i=1}^n (\langle (\xi, 1) \rangle \langle (1, \xi) \rangle [\xi^i]) - \langle (1, \xi), (\xi, 1) \rangle \langle (1, \xi^i) \rangle [\xi, 1] + \langle (1, \xi) \rangle \langle (\xi, 1) \rangle [\xi^i, 1] + \langle (1, \xi^i) \rangle \langle (\xi, 1) \rangle \langle (\xi^i, 1) \rangle].$$

Consider the following commutative diagram

$$0 \rightarrow H_3(\mu_F) \oplus H_3(\mu_F) \rightarrow H_3(\mu_F \times \mu_F) \rightarrow \text{Tor}_1^F(\mu_F, \mu_F) \rightarrow 0$$

$$0 \rightarrow \bigoplus_{i+j=3} H_i(F^*) \otimes H_j(F^*) \rightarrow H_3(F^* \times F^*) \rightarrow \text{Tor}_1^F(F^*, F^*) \rightarrow 0.$$
5. The injectivity theorem

Let $A := \mathbb{Z}[\frac{1}{2}]$ and let $P_{\ast} \to A$ be a $A[G_{3}]$-resolution of A with trivial G_{3}-action. Consider the complex

$$D'_{0} : 0 \to D'_{1}(F^{3}) \to D'_{2}(F^{3}) \to \cdots \to D'_{i}(F^{3}) \to \cdots,$$

where $D'_{i}(F^{3}) := D_{i}(F^{3}) \otimes A$. The double complex $D'_{\ast} \otimes_{G_{3}} P_{\ast}$ induces a first quadrant spectral sequence $E^{1}_{p,q} \Rightarrow H_{p+q}(G_{3}, A)$, where $E^{1}_{p,q} = \tilde{E}^{1}_{p+1,q}(3) \otimes A$ and $\partial^{1}_{p,q} = \tilde{d}^{1}_{p+1,q} \otimes id_{A}$.

Lemma 5.1. The groups $E^{2}_{3,0}$, $E^{2}_{4,0}$, $E^{2}_{2,1}$, $E^{2}_{3,1}$, $E^{2}_{1,2}$ and $E^{2}_{2,2}$ are trivial.

Proof. This follows from the above spectral sequence and lemmas 3.1, 3.2, 3.3.

Theorem 5.2. The map $H_{3}(\text{inc}) : H_{3}(G_{2}, \mathbb{Z}[\frac{1}{2}]) \to H_{3}(G_{3}, \mathbb{Z}[\frac{1}{2}])$ is injective.

Proof. By lemma 5.1, $E_{0,3}^{2} \simeq E_{0,3}^{\infty} \simeq H_{3}(G_{3}, A)$, so to prove the theorem it is sufficient to prove that $H_{3}(G_{2}, A)$ is a summand of $E_{0,3}^{2}$. To prove this it is sufficient to define a map $\varphi : H_{3}(F^{*} \times G_{2}, A) \to H_{3}(G_{2}, A)$ such that $\varphi|H_{3}(G_{2}, A)$ is the identity map and $\partial_{3,3}^{1}(H_{3}(F^{*} \times G_{1}, A)) \subseteq \ker(\varphi)$.

By a similar argument as in the previous section we have the canonical decompositions $H_{3}(F^{*} \times G_{2}, A) = \bigoplus_{i=0}^{4} S_{i}$, where $S_{i} = H_{1}(F^{*}, A) \otimes H_{3-i}(G_{2}, A)$ for $0 \leq i \leq 3$ and $S_{4} = \text{Tor}_{1}^{H_{1}}(H_{1}(F^{*}, A), H_{1}(G_{2}, A))$. Note that the splitting map is

$$S_{4} \simeq \text{Tor}_{1}^{H_{1}}(\mu_{F}, \mu_{F}) \otimes A \xrightarrow{\phi} H_{3}(F^{*} \times F^{*}, A) \xrightarrow{q} H_{3}(F^{*} \times G_{2}, A),$$

where ϕ is defined in the previous section and $q : F^{*} \times F^{*} \to F^{*} \times G_{2}$, $(a, b) \mapsto \text{diag}(a, b, 1)$.

Define $\varphi : S_{0} \to H_{3}(G_{2}, A)$ the identity map, $\varphi : S_{2} \simeq H_{2}(F^{*}, A) \otimes H_{1}(G_{1}, A) \to H_{3}(F^{*} \times G_{1}, A)$ the shuffle product, $\varphi : S_{3} \to H_{3}(G_{2}, A)$ the map induced by $F^{*} \to G_{2}$, $a \mapsto \text{diag}(a, 1)$, and $\varphi : S_{4} \to H_{3}(G_{2}, A)$ the composite map

$$S_{4} \xrightarrow{\phi} H_{3}(F^{*} \times F^{*}, A) \xrightarrow{\text{inc}} H_{2}(G_{2}, A).$$

Consider the decomposition $H_{3}(G_{2}, A) = H_{2}(G_{1}, A) \oplus K_{2}^{M}(F) \otimes A$ [3, Prop. A. 11, p. 67]. Then $S_{1} = S_{1}' \oplus S_{1}''$, where $S_{1}' = H_{1}(F^{*}, A) \otimes H_{2}(G_{1}, A)$ and $S_{1}'' = H_{1}(F^{*}, A) \otimes K_{2}^{M}(F) \otimes A$. Define $\varphi : S_{1}' \to H_{3}(G_{2}, A)$ the shuffle product and let $\varphi : S_{1}'' \to H_{3}(G_{2}, A)$ be the composite map

$$H_{1}(F^{*}, A) \otimes K_{2}^{M}(F) \otimes A \xrightarrow{f} H_{1}(F^{*}, A) \otimes H_{2}(G_{2}, A) \xrightarrow{g} H_{3}(F^{*} \times G_{2}, A) \xrightarrow{h} H_{3}(G_{2}, A),$$

where f is induced by

$$K_{2}^{M}(F) \otimes A \to H_{2}(G_{2}, A),$$

$$\{a, b\} \mapsto \frac{1}{2}\text{c}(\text{diag}(a, 1), \text{diag}(b, b^{-1})).$$
are the shuffle product and \(h \) is induced by the map \(F^* \times G_2 \to G_2 \), \(\text{diag}(a, A) \mapsto aA \). By proposition 4.1 we have the canonical decomposition
\[
H_3(F^* \times G_1, A) = \bigoplus_{i=0}^{8} T_i,
\]
where
\[
\begin{align*}
T_0 &= H_3(G_1, A), \\
T_1 &= \bigoplus_{i=1}^{3} H_i(F^*_1, A) \otimes H_{3-i}(G_1, A), \\
T_2 &= \bigoplus_{i=1}^{3} H_i(F^*_2, A) \otimes H_{3-i}(G_1, A), \\
T_3 &= H_1(F^*_1, A) \otimes H_1(F^*_2, A) \otimes H_1(G_1, A), \\
T_4 &= \text{Tor}_1^A(H_1(F^*_1, A), H_1(F^*_2, A)), \\
T_5 &= \text{Tor}_1^A(H_1(F^*_1, A), H_1(G_1, A)), \\
T_6 &= \text{Tor}_1^A(H_1(F^*_2, A), H_1(G_1, A)), \\
T_7 &= H_1(F^*_1, A) \otimes H_2(F^*_2, A), \\
T_8 &= H_2(F^*_1, A) \otimes H_1(F^*_2, A).
\end{align*}
\]

We know that \(\bar{d}_{1,3} = \sigma_1 - \sigma_2 \), where \(\sigma_i = H_3(\alpha_{i,2}) \). It is not difficult to see that \(\bar{d}_{1,3}(T_0 \oplus T_1 \oplus T_2 \oplus T_7 \oplus T_8) \subseteq \ker(\varphi) \). Here one should use the isomorphism \(H_1(G_1, A) \cong H_1(G_2, A) \). Now \((\sigma_1 - \sigma_2)(T_4) \subseteq S_4 \), \(\sigma_1(T_5) \subseteq S_0 \) and \(\sigma_2(T_5) \subseteq S_1 \), \(\sigma_1(T_6) \subseteq S_4 \) and \(\sigma_2(T_6) \subseteq S_0 \). With this description one can see that \(\bar{d}_{1,3}(T_4 \oplus T_5 \oplus T_6) \subseteq \ker(\varphi) \). To finish the proof of the claim we have to prove that \(\bar{d}_{1,3}(T_3) \subseteq \ker(\varphi) \). Let \(x = a \otimes b \otimes c \in T_3 \), then
\[
\begin{align*}
\bar{d}_{1,3}(x) &= -b \otimes c(\text{diag}(a, 1), \text{diag}(1, c)) - a \otimes c(\text{diag}(b, 1), \text{diag}(1, c)) \in S_1 \\
&= (-b \otimes c(a, c) - a \otimes c(b, c), b \otimes \{a, c\} + a \otimes \{b, c\}) \in S'_1 \oplus S''_1
\end{align*}
\]
So
\[
\begin{align*}
\varphi(\bar{d}_{1,3}(x)) &= -c(\text{diag}(b, 1), \text{diag}(1, a), \text{diag}(1, c)) \\
&- c(\text{diag}(a, 1), \text{diag}(1, b), \text{diag}(1, c)) \\
&+ \frac{1}{2} c(\text{diag}(b, b), \text{diag}(a, 1), \text{diag}(c, c^{-1})) \\
&+ \frac{1}{2} c(\text{diag}(a, a), \text{diag}(b, 1), \text{diag}(c, c^{-1})).
\end{align*}
\]

Set \(p := \text{diag}(p, 1), \bar{p} := \text{diag}(1, q), p\bar{q}r := c(\text{diag}(p, 1), \text{diag}(1, q), \text{diag}(1, r)) \), etc. Conjugation by \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) induces the equality \(p\bar{q}r = \bar{p}qr \) and it is easy to see that \(pqr = -qpr \) and \(p^{-1}qr = -\bar{p}qr \). With these notations and the
above relations we have
\[
\varphi(v_{1,3}^1) = -abc - \overline{abc} + \frac{1}{2}(bac + \overline{bac} + \overline{bac} + \overline{bac}) \\
+ \frac{1}{2}(abc + \overline{abc} + \overline{abc} + \overline{abc}) = 0.
\]
This proves that $H_3(G_2, A)$ is a summand of $\mathcal{E}^2_{0,3}$.

\[\square\]

Theorem 5.3. We have a short exact sequence
\[
0 \to H_3(G_2, \mathbb{Z}[rac{1}{2}]) \to H_3(G_3, \mathbb{Z}[rac{1}{2}]) \to K_3^M(F) \otimes \mathbb{Z}[rac{1}{2}] \to 0
\]
which splits. The splitting map $K_3^M(F) \otimes \mathbb{Z}[rac{1}{2}] \to H_3(G_3, \mathbb{Z}[rac{1}{2}])$ is defined by
\[
\{a, b, c\} \mapsto [a, b, c] := \frac{1}{2}c(\text{diag}(a, 1, a^{-1}), \text{diag}(b, b^{-1}, 1), \text{diag}(c, 1, c^{-1})).
\]

Proof. The exactness follows from 5.2 and [6, 3.25]. For the splitting map see proposition 6.3 and remark 3 in the next section.

\[\square\]

6. **Indecomposable part of $K_3(F)$**

Lemma 6.1. Let G be a group and let $g_1, g_2, h_1, \ldots, h_n \in G$ such that each pair commute. Let $C_G(\langle h_1, \ldots, h_n \rangle)$ be the subgroup of G consists of all elements of G that commute with all $h_i, i = 1, \ldots, n$. If $c(g_1, g_2) = 0$ in $H_2(C_G(\langle h_1, \ldots, h_n \rangle))$, then $c(g_1, g_2, h_1, \ldots, h_n) = 0$ in $H_{n+2}(G)$.

Proof. The homomorphism $C_G(\langle h_1, \ldots, h_n \rangle) \times \langle h_1, \ldots, h_n \rangle \to G$ defined by $(g, h) \mapsto gh$ induces the map $H_2(C_G(\langle h_1, \ldots, h_n \rangle)) \otimes H_n(\langle h_1, \ldots, h_n \rangle) \to H_{n+2}(G)$. The claim follows from the fact that $c(g_1, g_2, h_1, \ldots, h_n)$ is the image of $c(g_1, g_2) \otimes c(h_1, \ldots, h_n)$ under this map.

\[\square\]

Definition 6.2. Let $A_{i,n} := \text{diag}(a_i, \ldots, a_i, a_i^{-1}, I_{n-i}) \in G_n$. We define $[a_1, \ldots, a_n] := c(A_{1,n}, \ldots, A_{n,n}) \in H_n(G_n)$.

Proposition 6.3. (i) The map $\nu_n : K_3(F) \to H_n(G_n)$ defined by $\{a_1, \ldots, a_n\} \mapsto [a_1, \ldots, a_n]$ is a homomorphism of groups.

(ii) Let $\kappa_n : H_n(G_n) \to K_3(F)$ be the map defined by Suslin. Then the composite map $\kappa_n \circ \nu_n$ coincides with the multiplication by $(-1)(n-1)(n-1)!$.

Proof. (i) The map $K_2^M(F) \to H_2(G_2)$ is defined by $\{a, b\} \mapsto [a, b]$ [3, A. 11]. So by lemma 6.1
\[
[a_1, 1 - a_1, a_3, \ldots, a_n] = 0.
\]
To complete the proof of (i) it is sufficient to prove that
\[
[a_1, \ldots, a_{n-2}, a_{n-1}, a_n] = -[a_1, \ldots, a_{n-2}, a_n, a_{n-1}].
\]
This can be done in the following way;

\[[a_1, \ldots, a_{n-2}, a_{n-1}, a_n] = \mathbf{c}(A_{1,n}, \ldots, A_{n-2,n}, A_{n-1,n}, A_{n,n}) \]
\[= \mathbf{c}(A_{1,n}, \ldots, A_{n-2,n}, \text{diag}(a_{n-1}I_{n-2}, a_{n-1}^{-1}, a_{n-1}^{-1}), A_{n,n}) \]
\[+ \mathbf{c}(A_{1,n}, \ldots, A_{n-2,n}, \text{diag}(I_{n-2}, a_{n-1}^{-1}, a_{n-1}^{-1}), A_{n,n}) \]
\[= \mathbf{c}(A_{1,n}, \ldots, A_{n-2,n}, \text{diag}(a_{n-1}I_{n-2}, a_{n-1}^{-1}, a_{n-1}^{-1}), \text{diag}(a_nI_{n-2}, a_n^{-1}, a_n^{-1}), 1) \]
\[+ \mathbf{c}(A_{1,n}, \ldots, A_{n-2,n}, \text{diag}(a_{n-1}I_{n-2}, a_{n-1}^{-1}, a_{n-1}^{-1}), \text{diag}(I_{n-2}, a_n^{-1}, a_n^{-1})) \]
\[+ \mathbf{c}(A_{1,n}, \ldots, A_{n-2,n}, \text{diag}(I_{n-2}, a_n^{-1}, a_n^{-1}), A_{n,n}) \]
\[= -[a_1, \ldots, a_{n-2}, a_{n-1}, a_n] \]
\[+ \mathbf{c}(A_{1,n}, \ldots, A_{n-2,n}, \text{diag}(I_{n-2}, a_{n-1}^{-1}, a_{n-1}^{-1}), \text{diag}(I_{n-2}, a_n^{-1}, a_n^{-1})) \]
\[+ \mathbf{c}(A_{1,n}, \ldots, A_{n-2,n}, \text{diag}(I_{n-2}, a_n^{-1}, a_n^{-1}), \text{diag}(I_{n-2}, a_n^{-1}, a_n^{-1})) \]
\[+ \mathbf{c}(A_{1,n}, \ldots, A_{n-2,n}, \text{diag}(I_{n-2}, a_n^{-1}, a_n^{-1}), \text{diag}(a_nI_{n-2}, 1, 1)) \]
\[= -[a_1, \ldots, a_n, a_{n-1}] \]

(ii) Let \(\tau_n \) be the composite map \(K_n^M(F) \to K_n(F) \xrightarrow{h} H_n(G_n) \). Then \(\kappa_n \circ \tau_n \) coincides with the multiplication by \((-1)^{(n-1)(n-1)!} \). [8, section 4]. It is well known that the composite map \(K_n^M(F) \xrightarrow{\tau} H_n(G_n) \to H_n(G_n)/H_n(G_{n-1}) \) is an isomorphism and it is defined by \(\{a_1, \ldots, a_n\} \mapsto (a_1 \cup \cdots \cup a_n) \mod H_n(G_{n-1}), \) where

\[a_1 \cup a_2 \cup \cdots \cup a_n = \mathbf{c}(\text{diag}(a_1, I_{n-1}), \text{diag}(1, a_2, I_{n-2}), \ldots, \text{diag}(I_{n-1}, a_n)) \]

(See [6, Remark 3.27].) Also we know that \(\kappa_n \) factor as

\[H_n(G_n) \to H_n(G_n)/H_n(G_{n-1}) \to K_n^M(F). \]

Our claim follows from the fact that \([a_1, \ldots, a_n] \mod H_n(G_{n-1}) = (-1)^{n-1}(n-1)! (a_1 \cup \cdots \cup a_n) \mod H_n(G_{n-1}) \].

\[\square \]

Remark 3. It is easy to see that in \(H_3(G_3) \)

\[\mathbf{c}(\text{diag}(a, 1, a^{-1}), \text{diag}(b, b^{-1}, 1), \text{diag}(1, c^{-1}, c)) = 0. \]

Using this one can prove that

\[[a, b, c] = \mathbf{c}(\text{diag}(a, 1, a^{-1}), \text{diag}(b, b^{-1}, 1), \text{diag}(c, 1, c^{-1})). \]

From this one can deduce that \([a, b, c] = -[c, b, a] \).
Lemma 6.4. (i) We have the following isomorphisms
\[H_i(SL(F)) \cong H_0(F^*, H_i(SL_n(F))) \text{ for } \ n \geq i, \]
\[H_3(G_3) \cong H_0(F^*, H_3(SL_3(F))) \oplus K_2(F) \otimes F^* \oplus H_3(F^*), \]
\[H_3(G_2, Z[\frac{1}{2}]) \cong H_0(F^*, H_3(SL_2(F), Z[\frac{1}{2}])) \oplus K_2(F) \otimes F^* \otimes Z[\frac{1}{2}] \oplus H_3(F^*, Z[\frac{1}{2}]). \]

(ii) Let \(H_3(\text{inc}) : H_3(G_2, Z[\frac{1}{2}]) \to H_3(G_3, Z[\frac{1}{2}]) \). Then on the summands
\[H_3(\text{inc}) = \begin{pmatrix}
\text{inc}_* & \beta & 0 \\
0 & 2, \text{id} & 0 \\
0 & 0 & \text{id}
\end{pmatrix}, \]
where \(\beta : K_2(F) \otimes F^* \otimes Z[\frac{1}{2}] \to H_0(F^*, H_3(SL_3(F), Z[\frac{1}{2}])) \) is induced by
\[\{a, b\} \otimes c \mapsto c(\text{diag}(a, 1, a^{-1}), \text{diag}(b, b^{-1}, 1), \text{diag}(c, 1, c^{-1})). \]

Proof. The part (i) of this lemma is rather well known (see [7, 2.7], [9, p. 233], [2, Rem. 1.2.8]). We will include the proofs to clarify the proof of (ii).

For the first isomorphism see [7, 2.7, p. 284]. Each element \(M \in G \) can be written as \(M = \text{diag}(\det(M)^{-1}, M), \text{diag}(\det(M), 1) \). This induces the homotopy equivalence \(BG^+ \cong BSL(F)^+ \times BF^+ \) [9, Lemma 5.3]. The second isomorphism in (i) follows from applying the Künneth theorem to \(BG^+ \), the first isomorphism and the stability theorem \(H_3(G_3) \cong H_3(G) \) [8, Thm. 3.4]. The inclusions \(H_0(F^*, H_3(SL_3(F))) \to H_3(G_3) \) and \(H_3(F^*) \to H_3(G_3) \) are induced by the maps \(SL_3(F) \to G_3, M \mapsto M, \) and \(F^* \to G_3, a \mapsto \text{diag}(a, 1, 1) \), respectively. The inclusion \(K_2(F) \otimes F^* \to H_3(G_3) \) is defined by
\[\{a, b\} \otimes c \mapsto c(\text{diag}(a, 1, 1), \text{diag}(b, b^{-1}, 1), \text{diag}(1, 1, c)). \]

Now we prove the last isomorphism in (i). Set \(A := Z[\frac{1}{2}] \). From the map \(\gamma : SL_2(F) \times F^* \to G_2, (M, a) \mapsto a M \), we obtain two short exact sequences
\[1 \to \mu_2, F \to SL_2(F) \times F^* \to \text{im(}\gamma\text{)} \to 1, \]
\[1 \to \text{im}(\gamma) \to G_2 \to F^*/F^2 \to 1. \]

Writing the Lyndon-Hochschild-Serre spectral sequence of the above exact sequences and carrying out not difficult analysis, one gets
\[H_3(\text{im}(\gamma), A) \cong H_3(SL_2(F) \times F^*, A), \]
\[H_0(F^*/F^2, H_3(\text{im}(\gamma), A)) \cong H_3(G_2, A). \]

(2) The action of \(F^2 \) on \(H_3(\text{im}(\gamma), A) \) is trivial because for every \(M \in \text{im}(\gamma) \),
\[\text{diag}(a^2, 1).M.\text{diag}(a^{-2}, 1) = \text{diag}(a, a).\text{diag}(a, a^{-1}).M, \]
\[\text{diag}(a^{-1}, a).\text{diag}(a^{-1}, a^{-1}), \]
so from (3) we obtain
\[H_0(F^*, H_3(\text{im}(\gamma), A)) \cong H_3(G_2, A). \]
(4)
Relations (2) and (4) imply
\[H_3(G_2, A) \simeq H_0(F^*, H_3(SL_2(F) \times F^*, A)). \]

Now applying the Künneth theorem we get the isomorphism that we are looking for. The inclusions \(H_0(F^*, H_3(SL_2(F), A)) \to H_3(G_2, A) \) and \(H_3(F^*, A) \to H_3(G_2, A) \) are defined in natural way. (See the proof of the second isomorphism.) The inclusion \(K_2(F) \otimes F^* \otimes A \to H_3(G_2, A) \) is defined by
\[\{a, b\} \otimes c \mapsto \mathbf{c}(\text{diag}(a, 1), \text{diag}(b, b^{-1}), \text{diag}(c, c)). \]

Using remark 3
\[H_3(\text{inc})(\{a, b\} \otimes c) = \mathbf{c}(\text{diag}(a, 1, 1), \text{diag}(b, b^{-1}, 1), \text{diag}(c, c, 1)) \]
\[= \mathbf{c}(\text{diag}(a, 1, 1), \text{diag}(b, b^{-1}, 1), \text{diag}(c, c, c^{-2})) \]
\[+ \mathbf{c}(\text{diag}(a, 1, 1), \text{diag}(b, b^{-1}, 1), \text{diag}(1, 1, c^2)) \]
\[= \mathbf{c}(\text{diag}(a, 1, a^{-1}), \text{diag}(b, b^{-1}, 1), \text{diag}(c, 1, c^{-1})) \]
\[+ \mathbf{c}(\text{diag}(a, 1, 1), \text{diag}(b, b^{-1}, 1), \text{diag}(1, 1, c^2)). \]

Therefore on the summands
\[H_3(\text{inc})(0, \{a, b\} \otimes c, 0) = ([a, b, c], 2\{a, b\} \otimes c, 0). \]

\[\square \]

Corollary 6.5. There is an exact sequence
\[0 \to H_0(F^*, H_3(SL_2(F), \mathbb{Z}[\frac{1}{2}])) \to \]
\[H_0(F^*, H_3(SL_3(F), \mathbb{Z}[\frac{1}{2}])) \to K_3^M(F) \otimes \mathbb{Z}[\frac{1}{2}] \to 0 \]
which splits. The splitting map is induced by \(\{a, b, c\} \mapsto \frac{1}{2}[a, b, c]. \)

Proof. The proof follows from 6.4, 6.3 and 5.3. \[\square \]

Let \(K^M_3(F) \to K_3(F) \) be the natural map from the Milnor \(K \)-group to the Quillen \(K \)-group. Define \(K_3(F)_{\text{ind}} := \text{coker}(K^M_3(F) \to K_3(F)). \) This group is called the indecomposable part of the Quillen \(K_3 \)-group.

Theorem 6.6. We have an isomorphism
\[K_3(F)_{\text{ind}} \otimes \mathbb{Z}[\frac{1}{2}] \simeq H_0(F^*, H_3(SL_2(F), \mathbb{Z}[\frac{1}{2}])). \]

Proof. Suslin constructed a map \(\varphi : K_3(F) \to K^M_3(F) \) such that \(K^M_3(F) \xrightarrow{\psi} K_3(F) \xrightarrow{\varphi} K^M_3(F) \) coincides with the multiplication by 2. This implies that
\[0 \to K^M_3(F) \otimes \mathbb{Z}[\frac{1}{2}] \xrightarrow{\psi} K_3(F) \otimes \mathbb{Z}[\frac{1}{2}] \to K_3(F)_{\text{ind}} \otimes \mathbb{Z}[\frac{1}{2}] \to 0. \]
is exact and splits. Set \(L_i = H_0(F^*, H_3(SL_i(F), \mathbb{Z}[^1_2])) \) for \(i = 2, 3 \). We have the following commutative diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & K_3(F)_{\text{ind}} \otimes \mathbb{Z}[^1_2] \\
\downarrow f & & \downarrow g \\
0 & \longrightarrow & K_3(F) \otimes \mathbb{Z}[^1_2] \\
\end{array}
\longrightarrow K_3^M(F) \otimes \mathbb{Z}[^1_2] \longrightarrow 0
\]

where \(g \) is the map

\[
K_3(F) \otimes \mathbb{Z}[^1_2] \cong H_3(SL_i(F), \mathbb{Z}[^1_2]) \cong H_0(F^*, H_3(SL_3(F), \mathbb{Z}[^1_2]))
\]

(see [7, Prop. 2.5]) and \(f \) is induced by the commutativity of the right part of the diagram. The results follows from the Five lemma.

\[\square\]

Remark 4. Theorem 6.6 generalizes theorem [7, Thm. 4.1], where three torsion was not treated.

7. Homology of \(GL_n(F) \)

Let \(k \) be a field and \(C_i(F^n) := C_i(F^n) \otimes k \). Consider the following commutative diagram of two complexes

\[
\begin{array}{ccc}
0 & \leftarrow & C_0'(F^n) \\
\downarrow & & \downarrow \\
0 & \leftarrow & C_1'(F^n) \\
\downarrow & & \downarrow \\
& \leftarrow & C_2'(F^n) \\
\downarrow & & \downarrow \\
& & \cdots
\end{array}
\]

where the first vertical map is zero and the other vertical maps are just identity maps. This gives a map of the first quadrant spectral sequences

\[
E_{pq}^1(n) \otimes k \rightarrow \mathcal{E}_{pq}^1(n),
\]

where \(\mathcal{E}_{pq}^1(n) \Rightarrow H_{p+q-1}(G_n, k) \) with \(\mathcal{E}^1 \)-terms

\[
\mathcal{E}_{pq}^1(n) = \begin{cases}
E_{pq}^1(n) \otimes k & \text{if } p \geq 1 \\
0 & \text{if } p = 0
\end{cases}
\]

and differentials \(\partial_{pq}^1(n) \) = \(\begin{cases}
d_{pq}^1(n) \otimes \text{id}_k & \text{if } p \geq 2 \\
0 & \text{if } p = 1
\end{cases} \). It is not difficult to see that \(E_{pq}^\infty \otimes k = \mathcal{E}_{pq}^\infty \) if \(p \neq 1, q \leq n \) and \(p + q \leq n + 1 \). Hence \(\mathcal{E}_{pq}^\infty = 0 \) if \(p \neq 1, q \leq n \) and \(p + q \leq n + 1 \).

We look at the second spectral sequence in a different way. The complex

\[
0 \leftarrow C_0'(F^n) \leftarrow C_1'(F^n) \leftarrow \cdots \leftarrow C_i'(F^n) \leftarrow \cdots
\]

induces a first quadrant spectral sequence \(\mathcal{E}_{pq}^1(n) \Rightarrow H_{p+q}(G_n, k) \), where \(\mathcal{E}_{pq}^1(n) = \mathcal{E}_{p+1,q}^1(n) \) and \(\partial_{pq}^1(n) = \partial_{p+1,q}^1(n) \). Thus \(\mathcal{E}_{pq}^\infty(n) = 0 \) if \(p \geq 1, q \leq n - 1 \) and \(p + q \leq n \).
Proposition 7.1. Let \(n \geq 3 \) and let \(k \) be a field such that \((n-1)! \in k^*\). Let the complex

\[
H_n(F^{*2} \times G_{n-2}, k) \xrightarrow{\beta^{(n)}_2} H_n(F^* \times G_{n-1}, k) \xrightarrow{\beta^{(n)}_1} H_n(G_{n}, k) \to 0
\]

be exact, where \(\beta^{(n)}_2 = H_n(\alpha_1; 2) - H_n(\alpha_2; 2) \) and \(\beta^{(n)}_1 = H_n(\text{inc}) \). If the map \(H_n(\text{inc}) : H_n(G_{n-1}, k) \to H_n(G_{m}, k) \) is injective for \(m = n-1, n-2 \), then \(H_n(\text{inc}) : H_n(G_{n-1}, k) \to H_n(G_{n}, k) \) is injective.

Proof. The exactness of (5) shows that the differentials \(\partial^{r}_{r,n-r+1}(n) : E^{r}_{r,n-r+1}(n) \to E^{r}_{0,n}(n) \) are zero for \(r \geq 2 \). This proves that \(E^{\infty}_{0,n}(n) \cong E^{2}_{0,n}(n) \). To complete the proof it is sufficient to prove that the group \(H_n(G_{n-1}, k) \) is a summand of \(E^{\infty}_{0,n}(n) \). To prove this it is sufficient to define a map \(\varphi : H_n(F^* \times G_{n-1}, k) \to H_n(G_{n-1}, k) \) such that \(\partial^{1}_{1,n}(H_n(F^{*2} \times G_{n-2}, k)) \subseteq \text{ker}(\varphi) \). Consider the decompositions \(H_n(F^* \times G_{n-1}, k) = \bigoplus_{i=0}^{n} S_i \), where \(S_i = H_i(F^*, k) \otimes H_{n-i}(G_{n-1}, k) \). For \(2 \leq i \leq n \), the stability theorem gives the isomorphisms \(H_i(F^*, k) \otimes H_{n-i}(G_{n-2}, k) \cong S_i \). Define \(\varphi : S_0 \to H_n(G_{n-1}, k) \) the identity map and for \(2 \leq i \leq n \), \(\varphi : S_i \simeq H_i(F^*, k) \otimes H_{n-i}(G_{n-2}, k) \to H_n(G_{n-1}, k) \) the shuffle product. To complete the definition of \(\varphi \) we must define it on \(S_1 \). By a theorem of Suslin [8, 34] and the assumption, we have the decomposition \(H_{n-1}(G_{n-1}, k) \cong H_{n-1}(G_{n-2}, k) \oplus K_{n-1}^M(F) \otimes k \). So \(S_1 \simeq H_1(F^*, k) \otimes H_{n-1}(G_{n-2}, k) \oplus H_1(F^*, k) \otimes K_{n-1}^M(F) \otimes k \). Now define \(\varphi : H_1(F^*, k) \otimes H_{n-1}(G_{n-2}, k) \to H_n(G_{n-1}, k) \) the shuffle product and \(\varphi : H_1(F^*, k) \otimes K_{n-1}^M(F) \to H_n(G_{n-1}, k) \) the composite map

\[
H_1(F^*, k) \otimes K_{n-1}^M(F) \otimes k \xrightarrow{f} H_1(F^*, k) \otimes H_{n-1}(G_{n-1}, k) \xrightarrow{g} H_n(F^* \times G_{n-1}, k) \xrightarrow{h} H_n(G_{n-1}, k),
\]

where \(f = \frac{1}{n-1}(\text{id} \otimes \kappa_{n-1}) \), \(g \) is the shuffle product and \(h \) is induced by the map \(F^* \times G_{n-1} \to G_{n-1} \), \(\text{diag}(a, A) \mapsto aA \). By the K"unneth theorem we have the decomposition

\[
T_0 = H_n(G_{n-2}, k),
\]

\[
T_1 = \bigoplus_{i=1}^{n} H_i(F^*, k) \otimes H_{n-i}(G_{n-2}, k),
\]

\[
T_2 = \bigoplus_{i=1}^{n} H_i(F^*, k) \otimes H_{n-i}(G_{n-2}, k),
\]

\[
T_3 = H_1(F^*, k) \otimes H_1(F^*, k) \otimes H_{n-2}(G_{n-2}, k),
\]

\[
T_4 = \bigoplus_{i+j \geq 3} H_i(F^*, k) \otimes H_j(F^*, k) \otimes H_{n-i-j}(G_{n-2}, k).
\]

By lemma 6.3, \(T_3 = T_3^* \otimes T_3^* \), where \(T_3^* = H_1(F^*, k) \otimes H_1(F^*, k) \otimes H_{n-2}(G_{n-3}, k) \) and \(T_3^* = H_1(F^*, k) \otimes H_1(F^*, k) \otimes K_{n-2}^M(F) \otimes k \). It is not
difficult to see that \(\partial^1_{1,n}(T_0 \oplus T_1 \oplus T_2 \oplus T_3 \oplus T_4) \subseteq \ker(\varphi) \). Here one should use the stability theorem. To prove \(\partial^1_{1,n}(T_3^n) \subseteq \ker(\varphi) \) we apply 6.3;

\[
\partial^1_{1,n} \left(a \otimes b \otimes \{c_1, \ldots, c_{n-2}\} \right) \\
= \frac{(-1)^{n-3}}{(n-3)!} \left(b \otimes c(\text{diag}(a, I_{n-2}), \text{diag}(1, C_{1,n-2}), \ldots, \text{diag}(1, C_{n-2,n-2})) \\
+ a \otimes c(\text{diag}(b, I_{n-2}), \text{diag}(1, C_{1,n-2}), \ldots, \text{diag}(1, C_{n-2,n-2})) \right) \\
= \frac{1}{(n-2)!} \left(b \otimes [c_1, \ldots, c_{n-2}, a] + a \otimes [c_1, \ldots, c_{n-2}, b]; \\
- b \otimes c(\text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(a I_{n-2}, 1)) \\
- a \otimes c(\text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(b I_{n-2}, 1)) \right).
\]

Therefore \(\partial^1_{1,n} \left(a \otimes b \otimes \{c_1, \ldots, c_{n-2}\} \right) = (x_1, x_2) \in T_3^n \oplus T_3^n \), where

\[
x_1 = \frac{1}{(n-2)!} \left(b \otimes c(\text{diag}(C_{1,n-2}, \ldots, \text{diag}(C_{n-2,n-2}), \text{diag}(a I_{n-2}))) \\
+ a \otimes c(\text{diag}(C_{1,n-2}, \ldots, \text{diag}(C_{n-2,n-2}), \text{diag}(b I_{n-2}))) \right),
\]

\[
x_2 = (-1)^{n-2} \left(b \otimes \{c_1, \ldots, c_{n-2}, a\} + a \otimes \{c_1, \ldots, c_{n-2}, b\} \right).
\]

We have \(\phi(x_1) = -\frac{1}{(n-2)!}y \), where

\[
y = c(\text{diag}(b, I_{n-2}), \text{diag}(1, C_{1,n-2}), \ldots, \text{diag}(1, C_{n-2,n-2}), \text{diag}(1, a I_{n-2})) \\
+ c(\text{diag}(a, I_{n-2}), \text{diag}(1, C_{1,n-2}), \ldots, \text{diag}(1, C_{n-2,n-2}), \text{diag}(1, b I_{n-2}))
\]

and \(\phi(x_2) = \frac{(-1)^{n-2}}{n-1} \frac{(-1)^{n-2}}{(n-2)!} z = \frac{1}{(n-2)!} z \), where

\[
z = \\
c(\text{diag}(b I_{n-1}), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(a I_{n-2}, a^{-(n-2)})) \\
+ c(\text{diag}(a I_{n-1}), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(b I_{n-2}, b^{-(n-2)})) \\
= c(\text{diag}(b I_{n-1}), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(a I_{n-2}, a)) \\
+ c(\text{diag}(b I_{n-1}), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(I_{n-2}, a^{-(n-1)})) \\
+ c(\text{diag}(a I_{n-1}), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(b I_{n-2}, b)) \\
+ c(\text{diag}(a I_{n-1}), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(I_{n-2}, b^{-(n-1)})).
\]
Hence $\phi(x_2) = -\frac{1}{(n-2)!}z'$, where
\[
z' = c\left(\text{diag}(bI_{n-1}), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(I_{n-2}, a)\right) \\
+ c\left(\text{diag}(aI_{n-1}), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(I_{n-2}, b)\right) \\
= c\left(\text{diag}(bI_{n-2}, 1), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(I_{n-2}, a)\right) \\
+ c\left(\text{diag}(aI_{n-2}, b), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(I_{n-2}, b)\right) \\
+ c\left(\text{diag}(I_{n-2}, a), \text{diag}(C_{1,n-2}, 1), \ldots, \text{diag}(C_{n-2,n-2}, 1), \text{diag}(I_{n-2}, b)\right) \\
= -y.
\]

Therefore $\varphi(x_2) = -\frac{1}{(n-2)!}z' = -\frac{1}{(n-2)!}y = -\varphi(x_1)$. This completes the proof of the fact that $\varphi_1^n(\mathcal{H}(F^{*2} \times G_{n-2}, k)) \subseteq \ker(\varphi)$.

So it is reasonable to conjecture

Conjecture 7.2. Let $n \geq 3$. Then the following complex is exact
\[
H_n(F^{*2} \times G_{n-2}, k) \overset{\varphi_1^n}{\longrightarrow} H_n(F^* \times G_{n-1}, k) \overset{\varphi_1^n}{\longrightarrow} H_n(G, k) \rightarrow 0.
\]

Remark 5. The surjectivity of φ_1^n is already proven by Suslin [8].

Remark 6. All the results of this note is true if one replace the infinite field with a semi-local ring with infinite residue fields.

References

Department of Mathematics, Utrecht University, P. O. Box 80010, 3508 TA Utrecht, The Netherlands.

email: mirzai@math.uu.nl