MATH 500 — AUGUST 2017

Five problems, 20 points each. Maximum 100 points.

Justify all your answers!

1. (a) Let \(u_n = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \) denote the upper triangular nilpotent matrix with 1s just above the diagonal and 0s elsewhere. Show that if \(c \) is any nonzero complex number and \(I_n \) is the \(n \times n \) identity matrix, then \((cI_n + u_n)^k \neq I_n\) for all \(k > 0 \).

(b) Let \(GL_n(\mathbb{C}) \) denote the group of invertible \(n \times n \) matrices with complex coefficients (with matrix multiplication as the group operation). Prove that for every \(k > 0 \), if \(\Phi : \mathbb{Z}/k\mathbb{Z} \to GL_n(\mathbb{C}) \) is any group homomorphism, there exists some \(g \in GL_n(\mathbb{C}) \) such that \(g\Phi(m)g^{-1} \) is a diagonal matrix for all \(m \in \mathbb{Z}/k\mathbb{Z} \).

(c) Prove by example that the conclusion of part (b) can fail if \(GL_n(\mathbb{C}) \) is replaced by \(GL_n(F) \) for appropriate choices of integers \(k \) and \(n \) and finite field \(F \).

2. Must a group of order \(3 \cdot 5 \cdot 7 \) be solvable? Justify your answer.

3. Let \(A = \begin{pmatrix} -2 & -2 & -1 \\ 0 & -4 & -1 \\ 0 & +4 & 0 \end{pmatrix} \). Make \(V = \mathbb{C}^3 \) into a \(\mathbb{C}[x]- \)module by \(f(x)v := f(A) \cdot v \) (matrix multiplication) for \(f(x) \in \mathbb{C}[x] \), \(v \in V \).

Find an elementary divisor decomposition of the module \(V \). Justify your answer.

4. Consider the ring \(R = \mathbb{C}[x, y, z]/(x^2 - xy) \). Show that \(R \) is not a UPD.

5. Let \(K = \mathbb{Q}(\omega) \) where \(\omega = e^{2\pi i/17} \).

(a) Prove that \(K \) contains a unique subfield \(L \) such that \([L : \mathbb{Q}] = 8 \).

(b) Is \(L \) Galois over \(\mathbb{Q} \)? Justify.